

Early diagnosis and prevention of Alzheimer's disease

AC Immune

Version: 17.04.2023

www.acimmune.com

NASDAQ: ACIU | KOL Webinar, April 2023

Disclaimer

This presentation contains statements that constitute "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune's strategies or expectations. In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "projects," "potential," "outlook" or "continue," and other comparable terminology. Forward-looking statements are based on management's current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions "Item 3. Key Information – Risk Factors" and "Item 5. Operating and Financial Review and Prospects" in AC Immune's Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. These include: the impact of Covid-19 on our business, suppliers, patients and employees and any other impact of Covid-19. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are dual to update the in their entirety by this cautionary statement.

This presentation is strictly confidential, is being distributed to a limited range of invited persons solely for their own information, may not be distributed to the press or any other person, and may not be reproduced or published, in whole or in part, in any form.

SupraAntigen[®] is a registered trademark of AC Immune SA in the following territories: AU, CH, EU, GB, JP, RU, SG and USA. Morphomer[®] is a registered trademark of AC Immune SA in CH, CN, GB, JP, KR, NO and RU.

Head of Investor Relations and Communications, AC Immune
Andrea Pfeifer, PhD Chief Executive Officer, AC Immune
Kaj Blennow, MD, PhD Clinical Neurochemistry Lab at Sahlgrenska University Hospital in Gothenburg
Giovanni Frisoni, MD Department of Psychiatry of the Faculty of Medicine, University of Geneva
Marie Kosco-Vilbois, PhD Chief Scientific Officer, AC Immune
Johannes Streffer, MD Chief Medical Officer, AC Immune
Andrea Pfeifer, PhD Chief Executive Officer, AC Immune

Strategy and pipeline overview

Andrea Pfeifer, PhD, Chief Executive Officer

AC Immune at a glance

Pioneering new ways to treat neurodegenerative diseases

Broad, diverse pipeline – 16 programs 1 Phase 3 program and 5 in Phase 2

Key differentiation: Precision Medicine Integrates therapeutics and diagnostics

Multiple global partnerships >CHF 3 billion in potential milestones

Clinically validated technology platforms Best-in-class small molecules and biologics

Strong Balance sheet Funded into Q3 2024

(1) As of December 31, 2022; excluding treasury shares; (2) As of December 31, 2022

- Based in Lausanne, Switzerland
- ~150 employees
- Listed September 2016 (NASDAQ: ACIU)
- 83.6 million shares outstanding¹
- Cash of CHF 122.6 million² (~USD 132.5 million)

Successfully treating neurodegeneration requires precision medicine

From a mono- to a multi-target combination approach informed by cutting edge diagnostics

Imaging: AC Immune's Unique Tracers

In collaboration:

- **Digital Health Technologies & Wearable Devices**
 - Non-invasive diagnostics are critical for accurate patient selection and treatment to improve clinical outcomes
 - Early and comprehensive diagnosis may eventually lead to disease prevention and combination therapy

(1) alpha-synuclein; (2) TAR DNA-binding protein 43;

Broad and robust pipeline in neurodegenerative diseases

Driven by validated proprietary technology platforms for sustained growth

Clinical Stage Programs

TARGET	PRODUCT CANDIDATE	INDICATION	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	PARTNER
	ACI-35.030 (anti-pTau vaccine)	AD ¹ treatment						Janssen Besterner of the services
	Semorinemab (anti-Tau antibody)	AD treatment (<i>mild-to-moderate</i>) ²					data H2	Genentech A Member of the Roche Group
Tau	Morphomer [®] Tau	Rare Tauopathies						CRA
	aggregation inhibitor	AD treatment						Lilly
		AD diagnostic						
	PRODUCT CANDIDATEINDICATACI-35.030 (anti-pTau vaccine)AD1 treats (anti-Tau antibody)Semorinemab (anti-Tau antibody)AD treats (mild-to-A)Morphomer® Tau aggregation inhibitorRare Tau AD treats AD treats AD treatsTau-PET3 tracerAD diagr PSP4 diaCrenezumab (anti-Abeta antibody)AD prever AD treatsACI-24.060 (anti-Abeta vaccine)AD treats AD treatsACI-7104.056 (anti-a-syn vaccine)PD8, a-sy a-synucle 	PSP ⁴ diagnostic						Life Molecular Imaging
	Crenezumab (anti-Abeta antibody)	AD prevention ⁵						Genentech A Member of the Roche Group
Abeta	ACI-24.060	AD treatment (Down syndrome ⁶)				reported H1	· data H2 ⁹	
	(anti-Abeta vaccine)	AD treatment			L PHASE 1 PHASE 2 PHASE 3 PAR data H2			
7	ACI-7104.056 (anti-a-syn vaccine)	PD ⁸ , a-synucleinopathies	-			update H	2	
a-syn [,]	a-syn-PET tracer	a-synucleinopathies (e.g. MSA ¹⁰)					Di	agnostic

(1) Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alphasynuclein; (8) Parkinson's disease; (9) Refers to expected readouts from a Phase 1b/2 trial of an optimized formulation of ACI-24 (ACI-26.060) in patients with AD and patients with Down syndrome; (10) Multiple system atrophy

Key milestones for value creation in 2023

Multiple clinical readouts for wholly-owned vaccines

Achieved
 Clinical readouts
 Other development events

Vaccines		H1	H2	
		\bigcirc		Initiation of Down syndrome cohort of Phase 1b/2 ABATE study
		\bigcirc		IND submission to enable expansion of ABATE study to U.S.
ACI-24.060	Abeta	~		Two interim analyses in AD ¹ – safety, immunogenicity
				Interim analysis in Down syndrome – safety, immunogenicity
ACI-35.030	Tau		\bigcirc	Further development with initiation of next trial in AD and milestone payment
ACI-7104 a-syn ²				Phase 2 VACSYN study in PD update
Monoclonal antibodies	•			
Semorinemab	Tau			Phase 2 Lauriet Trial Open Label Extension results
Monoclonal antibody	TDP-43		\bigcirc	Candidate into preclinical development (tox)
Diagnostics	·			
a-syn ² -PET ³ tracer	a-syn		0	Next clinical candidate declaration for PD ⁴
TDP-43-PET tracer	TDP-43	\bigcirc		Clinical candidate declaration

(1) Alzheimer's disease; (2) Alpha-synuclein; (3) Positron emission tomography; (4) Parkinson's disease; (5) TAR DNA-binding protein 43

Vaccines as a new class of treatment for neurodegenerative disease

AC Immune vaccines: Potential for profound social and economic impact

Treatment

High efficacy with:

- Multiple epitope targeting
- Long-lasting immune response
- Steady titers
- Favorable safety and tolerability
- Convenient, annual dosing

😭 Maintenance

- Use as maintenance therapy after monoclonal anti-Abeta antibodies
- Convenient, annual dosing to maintain low plaque levels

Prevention

- Vaccination is the best strategy to preserve function and quality of life
- Cost-effective and global application

Goal: Global vaccines for neurodegenerative diseases

AC Immune: Pioneering science and precision medicine

Shifting the treatment paradigm for neurodegenerative disease towards precision medicine and disease prevention

CSF and blood biomarkers for diagnosis and triage of Alzheimer's disease

Kaj Blennow, MD, PhD, Professor and Academic Chair in Neurochemistry (University of Gothenburg), Head of the Clinical Neurochemistry Lab (Sahlgrenska University Hospital in Gothenburg)

The Alzheimer ATN CSF biomarkers are highly clinically validated

How do the core AD CSF biomarkers work in prodromal / preclinical AD ?

- ➔ The core AD CSF biomarkers show high diagnostic performance also in the MCI stage,
- \rightarrow The CSF AD biomarkers change in the preclinical phase; A β 42 before tau

Does CSF A_β42 reflect brain amyloidosis ?

- \rightarrow CSF A β 42 is associated with brain amyloidosis
- \rightarrow CSF A β 42 is a more sensitive / earlier biomarker than amyloid PET

What does CSF tau proteins stand for ?

In cohorts of CU elderly people and patients within the AD continuum,

-> CSF P-tau variants and T-tau increases with severity of tau pathology but also predict future rate of tau deposition by PET

So is then CSF P-tau and T-tau "more of the same" ?

- → Although CSF P-tau and T-tau correlate in AD continuum cohorts, they are not the same
- → CSF T-tau reflects intensity of neurodegeneration and severity of acute neuronal injury

The A β 42/40 ratio improves diagnostic performance compared to A β 42 alone

→ 50% lowering in CSF A β 42/40 ratio

- → very distinct bimodal distribution of values
- → stable cut-off over time

FDA approved cobas Elecsys CSF biomarkers – concordance with amyloid PET

-> CSF biomarkers and amyloid PET can be used interchangeably for inclusion purposes or diagnostics

Blood-based assays – the holy grail for AD biomarkers

Significant, but minor, decrease in plasma
 Aβ42/40 ratio in MCI (10%) and AD dementia (22%)

2014: Immunoprecipitation – mass spectrometry (LC-MS) SRM method for plasma Aβ42 and Aβ40

→ Minor (10%) decrease in plasma Aβ42/40 ratio in AD
 → Too small pilot cohort to evaluate clinical utility

Several assays for plasma AB ratio show good associations with brain amyloidosis

JAMA Neurology | Original Investigation

Research

Head-to-Head Comparison of 8 Plasma Amyloid- β 42/40 Assays in Alzheimer Disease

Shorena Janelidze, PhD; Charlotte E. Teunissen, PhD; Henrik Zetterberg, MD, PhD; José Antonio Allué, PhD; Leticia Sarasa, PhD; Udo Eichenlaub, PhD; Tobias Bittner, PhD; Vitaliy Ovod, MS;s Inge M. W. Verberk, MS; Kenji Toba, MD, PhD; Akimori Nakamura, MD, PhD, Blennow, MD, PhD; Oskar Hansson, MD, PhD IP – MS Washington University (IP-MS-WashU) Antibody-free LC-MS Araclon (LC-MS-Arc) IP-MALDI Shimadzu (IP-MS-Shim) IP-MS Gothenburg (IP-MS-UGOT)

Elecsys immunoassay Roche Diag (IA-Elc) ELISA Euroimmun (IA-El) Simoa ADx and Quanterix (IA-N4PE) Simoa Quanterix (IA-Quan)

Plasma Aβ ratio gives high AUCs for brain amyloidosis, especially the WashU IP-MS method

Aβ negative (n = 168) ^a	Aβ positive (n = 118) ^a
able 1. Characteristics of Stud	y Participants in BioFINDER
Characteristic	Fold change
CSF Aβ42/40	- 56 %
Plasma Aβ42/40	
IP-MS-WashU	- 8 %
LC-MS-Arc	- 11 %
IA-Elc	- 9 %
IA-EI	- 9 %
IA-N4PE	- 12 %

Biomarker fold change is low
 independently of assay used

Why is plasma Aß ratio only marginally reduced (when CSF shows marked change)?

Plasma and CSF levels of Aβ42 or Aβ40 do not correlate, regardless of analytical technique used

 \rightarrow Biomarker (not assay) problem, suggesting that only a minor portion of plasma A β comes from the brain

Plasma p-tau – how it started

→ Very promising results for plasma P-tau181 a blood biomarker for AD,

correlating with CSF P-tau181 levels and associated with amyloid and tau PET measures of AD pathology

The three current plasma P-tau biomarkers in AD

- P-tau 181 and 217 and 231 biomarkers are increased in AD dementia and Aβ+ MCI and also in Aβ+ CU P-tau 217 has the largest fold change
- → Plasma P-tau does not change in other tauopathies or dementias
- → Plasma P-tau increases with more severe tau pathology

Comparing P-tau biomarkers - plasma P-tau217 and P-tau181

→ P-tau181 and P-tau217 have similar accuracy to identify brain amyloidosis and tau pathology

→ Fold change is higher for P-tau217 (verified in many studies)

Detailed comparison of plasma P-tau181, 217 and 231 – BioFinder

- → Plasma P-tau231 seems to be earlier (more responsive to minor amyloid pathology)
- → P-tau217 to better track disease progression (higher fold change with more severe disease)

Plasma P-tau probability score – a two-step screening workflow

Logistic regression model to predict Aβ-PET positivity: plasma p-tau217, age, APOE &

Development cohort BioFinder-1 n=136 MCI patients Validation cohort BioFinder-2 n=212 MCI patients

Development cohort	Plasma P-tau217 performance for Aβ-PET positivity (single cut-off):										
Validation cohort → Sens 87.6 % Spec 83.1 %	Development cohort	→	Sens 78.0 %	Spec 81.5 %							
	Validation cohort	→	Sens 87.6 %	Spec 83.1 %							

More stringent cut-offs → more accurate prediction of risk for brain amyloidosis at the expense of a larger intermediate risk group

Reduction in # of CSF / PET tests goes from $86\% \rightarrow 73\% \rightarrow 61\%$

Plasma P-tau to monitor downstream treatment effects of Aß immunotherapy

Table 2 Clinical performance of the six P-tau assays

	AD dementia	Controls	
	Median [IQR]	Median [IQR]	Fold change
P-tau181 Eli Lilly	11.1 [10.4–13.6]	6.1 [5.1–7.4]	1.8
P-tau181 ADx	37.6 [28.8–48.6]	13.2 [10.3–17.6]	2.9
P-tau181 Quanterix	3.4 [2.7-4.1]	1.6 [1.4–2.2]	2.0
P-tau217 Eli Lilly	0.7 [0.6–0.9]	0.17 [0.14–0.2]	4.1
P-tau231 ADx	7.3 [5.6–9.1]	5.5 [4.5–6.9]	1.3
P-tau231 Gothenburg	15.3 [13.9–19.8]	10.3 [8.9–11.9]	1.5

Bayoumy et al.	
Alzheimer's Research & Therapy	(2021) 13:198
	-

Fold change of P-tau217 in AD is 4.1 (increase to 410 % of controls) Plasma P-tau217 drops 23% from baseline level with donanemab

Will continued treatment (how long) take P-tau217 down to normal levels? Will P-tau217 creep back up with discontinuation of treatment?

 \rightarrow Can plasma P-tau be used to monitor A β immunotherapy in the clinic ?

The future of AD blood biomarkers

Current clinical trials on biomarker performance are from highly specialized research centers

• defined patient cohorts and samples analyzed in one batch where optimal parameters can be determined

Clinical validation with prospective studies for real-world application

- "real-life" patient populations (range of pathologies including AD and other dementias; co-morbidities)
 AND
- "clinical routine-like" lab analyses (pre-set fixed parameters; daily/weekly analyses; different reagent batches)

Data also needed on differences or interferences in relation to:

• age-dependency; ethnicity; comorbidities; drug interactions

Future clinical use of blood biomarkers will likely depend on:

• Performance and robustness of biomarker algorithms (e.g. P-tau + ApoE4) as well as logistics and economics

Thanks for listening !

Amyloid imaging for accurate diagnosis and targeted therapy to prevent Alzheimer's disease

Giovanni Frisoni, MD, Professor of Clinical Neuroscience (University of Geneva), Director of the Memory Clinic at Geneva University Hospital

Hôpitaux Universitaires Genève

Where human amyloid research started for real:

11C-labelled tracers for research 18F-labelled tracers in the clinic Amyloid β deposition, neurodegeneration, and cognitive \Re \Re \Re decline in sporadic Alzheimer's disease: a prospective cohort study with 11C-PIB Lancet Neurol 2013; 12: 357-67

18F-labeled amyloid PET tracers

Clark CM et al., JAMA, 2011

Amyloid PET in the clinic

Where does amyloid PET stand in its pathway to validation?

	Phase 1: preclinical exploratory studies; PA	Phase for Al	Phase 2: clinical assay development for Alzheimer's disease pathology					Phase 3: retrospective studies using longitudinal data available in repositories					Phase 4: prospective diagnostic accuracy studies					Phase 5: disease burden reduction studies; PA
		PA	SA1	SA2	SA3	SA4	PA1	PA2	SA1	SA2	SA3	SA4	PA	SA1	SA2	SA3	SA4	
MRI medial temporal atrophy*	Full	Full	Part	Full	Full	Full	Full	PE	Part	Part	Part	NA	NE	NE	NE	NE	NE	NE
^{**} F-fluorodeoxy-glucose PET	Full	Full	Full	Full	Full	Part	Full	Part	PE	Part	Part	PE	NE	PE	NE	PE	NE	NE
**C-PiB and fluorinated tracers for amyloid PET [†]	Full	Full	Part	Full	Part	Part	Full	Part	NE	Part	Part	PE	NE	NE	NE	NE	NE	NE
CSF measures (Αβ42 or Αβ42:Αβ40 or total tau and hyperphosphorylated tau)	Full	Full	PE	Full	Part	Part	Full	Part	Part	Part	Part	PE	PE	NE	NE	NE	NE	NE

PA=primary aim. SA=secondary aim. Full=Phase fully achieved (no need to collect further evidence). Part=Phase partly achieved (studies available but replication or completion is required). PE=only preliminary evidence available. NA=not applicable. NE=no evidence available. PiB=Pittsburgh compound. Aβ=fibrillar β-amyloid. *Assessments represent the least developed level between visual and volumetric medial temporal atrophy. †Using tracers such as florbetapir, flutemetamol, or florbetaben.

Table 4: State of completion of biomarkers development in Alzheimer's disease for the five phases in the strategic roadmap

Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers

Lancet Neurol 2017; 16: 661–76

Giovanni B Frisoni, Marina Boccardi, Frederik Barkhof, Kaj Blennow, Stefano Cappa, Konstantinos Chiotis, Jean-Francois Démonet, Valentina Garibotto, Panteleimon Giannakopoulos, Anton Gietl, Oskar Hansson, Karl Herholz, Clifford R Jack Jr, Flavio Nobili, Agneta Nordberg, Heather M Snyder, Mara Ten Kate, Andrea Varrone, Emiliano Albanese, Stefanie Becker, Patrick Bossuyt, Maria C Carrillo, Chiara Cerami, Bruno Dubois, Valentina Gallo, Ezio Giacobini, Gabriel Gold, Samia Hurst, Anders Lönneborg, Karl-Olof Lovblad, Niklas Mattsson, José-Luis Molinuevo, Andreas U Monsch, Urs Mosimann, Alessandro Padovani, Agnese Picco, Corinna Porteri, Osman Ratib, Laure Saint-Aubert, Charles Scerri, Philip Scheltens, Jonathan M Schott, Ida Sonni, Stefan Teipel, Paolo Vineis, Pieter Jelle Visser, Yutaka Yasui, Bengt Winblad

IMI2 AMYPAD

A randomised study to validate amyloid PET in the clinic

Secondary endpoints

Diagnosis and	Patient	Health Economic	Imaging
Confidence	Management	Outcomes	Assessment
Time to	N. of patients	Impact of	Estimate amyloid
communicate	randomized to	patient reported	deposition over
etiological Dx	AD clinical trials	outcomes	18 months
Changes in	Change in	Cost of	Stand. methods
etiological Dx	Management	diagnostic WU to	of image
over time	Plan	high conf. Dx	quantitation
Changes of likelihood that ss are due to AD		Differences of use of medical resources	
Changes over time in utilization of amyloid PET imaging in Free Choice Arm		N. of subject discharged by memory clinic after exclusion of AD	

AMYPAD: Collaborative research centres

Neuraceq

UCL, London

CHU Toulouse

Cologne

VuMC, Amsterdam

Vizamyl
HUG Geneva
Karolinska
Barcelona Beta
Edinburgh (flute IMP)

Amyloid PET changes diagnostic assignment

Agreement between visual image interpretation and quantitative analysis of [18F]flutemetamol PET in the Geneva Memory Center cohort

Percentage of agreement = 95.4% Cohen's kappa = 0.91 (*p* < 0.01) Number of discordant cases = 3

Threshold reference: https://doi.org/10.1016/j.jalz.2016.08.005

Visual image interpretation and quantitative analysis of [18F]flutemetamol PET to predict cognitive progression in MCI patients at the Geneva Memory Center

A multisite analysis of the concordance between visual interpretation and quantitative analysis of [18F]flutemetamol PET

2192 Bucci, Nordberg, et al. Eur J Nucl Med Mol In								21) 48:2183–2199
Table 3 a Summa when examining vis	ary of dis sual vs S	cordant and conce UVr (Pons, 0.62 c	ordant scans when ex cut-off)	kamining visual	vs SUVr (Pon	s, optimized cut-o	ff). b Summary of	f discordant scans
Study	Total cases	Total concordant V+Q+	Total concordant V-Q-	Total discordant	% Disc	Total borderline/Q+	Total borderline/Q-	Agreement
a								
GE	172	71	100	1	1%	-	-	99.4%
KAROLINSKA	207	94	97	0	0%	7	9	100%
MCK	928	634	242	52	6%	-	-	94.4%
ALFA+	361	24	311	24	7%	1	1	93.3%
BIOFINDER	401	117	270	14	3%	-	-	96.5%
AIBL	276	96	160	13	5%	2	5	95.2%
Total	2345	1036	1180	104	4% (mean)	10	15	94.4% (mean)

42

MCI A+T+ rapidly progress to dementia A-T+ is a lower risk group

Peretti et al., 2023 in press

The biomarker-based diagnosis of cognitive complaints in the memory clinic An inter-societal European Delphi workflow

The biomarker-based diagnosis of cognitive complaints in memory clinics An inter-societal European Delphi workflow

Cognitive complaints

	SSESSMENT	-							CLI	NICAL AS	SSESSME	ENT ¹ S	CREENIN	IG OF BE	SD CO	GNITIVE	SCREEM	NING TE	STS						
N S	YNDROMIC IVPOTHESIS											Suspe	ected M	CI or m	ild deme	ntia									
	SSESSMENT							BLOG	DINCL	ISH BI2	FOLATES	SI DET	AILED N		TERY M	RIORO	17) I E	EG IN SI	PECIFIC	ASES					
UN SPE VA	YNDROMIC ROFILE IASED ON VO-WI SSESSMENT	Amnestic cog tive impairme and dispropo tionate media temporal lobe atrophy	gni- ent visuo-spi r- al parieto-c e atrophy	nant atial ent and occipital	Predomi ment (i.e tic/hon-fl consister dominan	nant langu , logopeni uent or se it focal atri t hemisph	uage impai c, agramm mantic) an ophy in the sere.	ir- Fn ha- be nd rai e dy syr wi ati	ontal haviou- and/or sexecutive ndrome th cortical ophy	Dysexec visuospa and at le alertnes visual ha behavior parkinsc	utive and atial defic east one a s fluctuat allucinatic ural dison mism	Wor its, imong tions, ons, REM ders,	Non-am dysexec motor d parkinse	nestic, m utive defi lysfunctio nism	ainly cit, ocular n and	Non- dyser symp dysfu aprao asym asym	amnestic ecutive of inction (ii iia), along metric b metric b	c, mainly deficits a neocortik n particu g with arkinson rain atro	nd cal Ilar, ism and phy	Cognitiv and MRI inconsis	e impairn with neg tent resul	nent, ative or t	No cognitive impairment	Non-amnestic cognitive deficit along with pseudo-bulbar signs and/or parkinsonism and with exten- sive relevant va- soular damage on MRI	Atypical course (e.g., rapid onset and progres- sion) associated with unusual symptoms or biological, neu- rophysiological, neu- rophysiological or neuroima- ging findings
0	LINICAL	Typical Al syndrom	D At	ypical AE CA) syndro Logo Pl	me penic PA	Agramm or sema PPA	natic Intic	bvFTD or fvAD	LE	3 spectro	um D-MCI	F	PSP spec	trum		¢	CBS		l hj	No clea /pothes	r sis	Psychiatric conditions, worried well, SCD	Vascular cognitive impairment	Other neurological disorders (e.g., LOE, CJD, AE)
			Suspec	cted AD			Susp	ected	FTLD	Sus	pected	LBD			Suspectau	cted m opathy	otor /			G G		G	G		
4	SSESSMENT ⁹	A.	CSF bio	marke Abon	rs derline	A+T+	F	DG-P	ET Abnormal and	DA Positive	AT-SPE	ECT pative	Normal	Abnon typical	FD nal and of CBS	G-PET	Abnormal typical o	i but not of CBS	Abnormal but not	CSF A+T+	bioma A+T-	rkers A- or borderline	AD: Alzheim AE: autoimn BPSD: beha symp	er's disease nune encephaliti vioural and psycl toms of dement	s nological ia
2	ESOLIS							of FTLD	of FTLD	~						of PSP			of PSP				CBS: cortico	entia basal syndrome	ontotemporar
E	IOMARKER IASED MAGNOSIS	U					U		FTLD		DLB still possible	PD-MCI excluded	IJ	a	as (PSP							CJD: Creutz CSF: cerebro CT: compute DAT: dopan DLB: demen	eldt-Jacob disea spinal fluid ed tomography ine transporter itia with Lewy bo	e dy
	SSESSMENT	FDG	-PET	amy P	/loid ET		bic	CSF	kers		MI	IBG graphy	bio	CSF	ers	bio	CSF	ers		~	~	FDG- PET	FTLD: fronta fvAD: fronta LBD: Lewy b	encephalograph orodeoxyglucose itemporal lobar o I variant of AD ody disease.	y Segeneration
R EM	ESULTS	Abnormal and typical of AD	Normal or abnormal but not typical of AD	Neg	Pos		A+T+ >>	*	A+T-	~	Pos	Neg	A+T+	*	A border or A*	rline T-	A	A+T+ ≫	hoice accordin PET pattern	*	fore ers needed*	*	LOE: late-on MCI: mild co MIBC: meta MRI: magne NPSY: neuro	set epilepsy ignitive impairm iodobenzylguani tic resonance im ipsychology	ent dine aging
E	TIOLOGICAL MAGNOSIS	AD	ť	1	AD	AD	AD	fvAD excluded	Review all the collected information			U	AD	CBS not due to AD	Review all the collected information		AD excluded	AD	Biomarker cl to FDG-I	AD	h biomark	According to FDC-PET pattern	PCA: poster PD: Parkinsu PET: positro PPA: primar PSP: progre SCD: subjec SPECT: sing	or cortical atropi n's disease n emission tomo y progressive ap ssive supranucle tive cognitive de le-photon emissi no ted tomocros	iy graphy nasia ar palsy cline on

Maximising information from amyloid PET in the clinic Early scans to assess cortical perfusion

Patients with Alzheimer phenotype and severe amygdalar atrophy (LATE - limbic predominant age-associated TDP-43 encephalopathy)

Normal MTA+/Amygdala– Mild atrophy MTA+/Amygdala ± Severe atrophy MTA+/Amygdala+

Dementia with Lewy bodies patients and amyloid comorbidity have poorer outcomes

	nie al baser		
	AD CS		
Variable	Pathological $(n = 32)$	Normal (n = 68)	P Value
Age at baseline Sex (%)	74.22 ± 7.95	71.93 ± 7.79	0.176
Male	16 (26.2)	45 (73.8)	0.122
-emale	16 (41.0)	23 (59.0)	
Years of education ^a	8.88 ± 3.34	10.63 ± 4.16	0.043
Disease duration ^b	2.79 ± 1.94	3.01 ± 2.58	0.678
MMSE	21.09	22.68	0.200
Median (range)	(5–30)	(6–30)	

TABLE 1. Demographics of DLB patients by AD CSF profile at baseline

Numbers represent mean and SD, if not otherwise stated. Missing data: ^aeducation 9 patients; ^bduration 1 patient.

FIG. 1. Change in MMSE from baseline (FU0) to one (FU1) and two (FU2) years follow-up in those with (n = 32, Line B) and without (n = 68, Line A) a CSF AD profile. The difference was statistically significant (LME, P = 0.04).

Abdelnour et al., Mov Disord 2016

Maximising informationfrom amyloid PET in the clinicEarly amy vs. FDG PET to discriminate AD from healthy controls

Amyloid PET in clinical trials

The CLARITY trial with lecanemab

Primary outcome

Slower progression on CDR-SOB of 0.45 points at 18 months (27%)

Secondary outcome

Reduction of amyloid PET tracer uptake of 59 centiloids at 18 months

Why the differential response in clinical trials?

Trial	Antibody	Duration (yrs)	Baseline amyloid (centiloids)	Residual amyloid (centiloids)	CDR-SB (Δ vs placebo)	
EMERGE (Ph3)	Aducanumab	1.5	85	25	-22% (-0.39; p=0.012)	
CLARITY AD (Ph3)	Lecanemab	1.5	78	23	-27% (-0.45; p=0.00005)	-22% to -27% slowed
Study 201 (Ph2)	Lecanemab	1.5	75	6	-26% (p=0.125)	decline at 18 months
TRAILBLAZER-ALZ (Ph2)	Donanemab	1.5	108	23	-23% (-0.36)	

Negative					
ENGAGE (Ph3)	Aducanumab	1.5	91	37	2% (+0.03; p=0.833)
GRADUATE I (Ph3)	Gantenerumab	2.25	92	34	-8% (-0.31; p=0.054)
GRADUATE II (Ph3)	Gantenerumab	2.25	98	51	-6% (-0.19; p=0.2998)

Sevigny et al., Nature 2016; Budd Haeberlein et al., J PrevAlzDis 2022; Budd Haeberlein et al., AD/PD 2021; Castrillo-Vigueraet al., CTAD2021; clinicaltrials.gov; Van Dyck et al., NEJM 2022; Swanson et al., Alzheimer's Res Ther. 2021, Biogen news releases July 25, 2018 & Sept 27, 2022 https://investors.biogen.com, Mintunet al., NEJM 2021; Bateman et al., CTAD2022.

Courtesy of Roger NITSCH, Uni Zurich

Complete amyloid removal might explain some unexpected results of sub-group analysis

	No. of Participants (placebo, lecanemab)	Favors lecanemab	Adjusted Mean Difference	Percent Slowing of Decline (%)
Overall	875, 859	—	-0.45	27
		1		
ApoE4 Genotype Status	5			
Noncarrier	275, 267 (31%)		-0.75	41
Heterozygote	468, 456	I	-0.50	30
Homozygote	132, 136		0.28	-22
Sex				-1.48
Female	464, 443		-0.20	12
Male	411, 416 (48%)	—	-0.73	43
Age		i i		
<65	178, 166	+ ;	-0.08	6
65-74	381, 368	I	-0.37	23
≥75	316, 325 (38%)		-0.72	40
Ethnicity - Global		· · ·		
Hispanic	108, 107	;	-0.50	52
Non-Hispanic	743, 715	·	-0.46	25
Race - Global		1		
White	677, 655	— •	-0.49	27
Asian	148, 147	<u></u>	-0.35	19
Black	24, 20	• ·	-0.72	63
Ethnicity – United State	s	:		
Hispanic	99, 100	`	-0.53	113
Non-Hispanic	356, 354	I	-0.58	31
Race- United States		• •		
White	431, 431	I	-0.58	36
Black	21, 19	•	-0.55	63
	-2.0	-1.6 -1.2 -0.8 -0.4 0 0.4	0.8	

Adjusted Mean Difference in CDR-SB versus Placebo (95% Cl)

Van Dyck et al. NEJM 2022 DOI: 10.1056/NEJMoa2212948

Amyloid PET in secondary prevention

Cognitively unimpaired Amy+ and Tau+ on PET are at high risk of MCI and dementia

Mayo Clinic Study on Aging

Ossenkoppele et al., Nat Med 2022

Blood biomarkers could save about 40% of amy and tau PET Geneva Memory Center Cohort

Green line: 95% sensitivity threshold. Red line: 95% specificity threshold.

Altomare et al., JNNP 2023

Secondary prevention will require new clinical services Brain Health Services for Dementia

The Lancet Regional
Health - Europe
2023;∎: 100576
Published Online XXX
https://doi.org/10.
1016/j.lanepe.2022.
100576

Health Policy

Dementia prevention in memory clinics: recommendations from the European task force for brain health services

Giovanni B. Frisoni,^{a,*} Daniele Altomare,^a Federica Ribaldi,^a Nicolas Villain,^{b,c} Carol Brayne,^d Naaheed Mukadam,^e Marc Abramowicz,^f Frederik Barkhof,^{g,h} Marcelo Berthier,ⁱ Melanie Bieler-Aeschlimann,^{j,k} Kaj Blennow,^I Andrea Brioschi Guevara,^{j,m} Emmanuel Carrera,ⁿ Gaël Chételat,^o Chantal Csajka,^p Jean-François Demonet,^{j,q} Alessandra Dodich,^r Valentina Garibotto,^s Jean Georges,^t Samia Hurst,^u Frank Jessen,^{v,w,x} Miia Kivipelto,^{y,z,aa,ab} David J. Llewellyn,^{ac,ad} Laura McWhirter,^{ae} Richard Milne,^{d,af} Carolina Minguillón,^{ag,ah,ai} Carlo Miniussi,^{r,aj} José Luis Molinuevo,^{ag,ak} Peter M. Nilsson,^{al,am} Alastair Noyce,^{an} Janice M. Ranson,^{ac} Oriol Grau-Rivera,^{ag} Jonathan M. Schott,^{ao} Alina Solomon,^{ap,aq,ab} Ruth Stephen,^{ap} Wiesje van der Flier,^{ar,as,at} Cornelia van Duijn,^{au,av} Bruno Vellas,^{aw} Leonie N. C. Visser,^{y,ax} Jeffrey L. Cummings,^{ay} Philip Scheltens,^{ar,az} Craig Ritchie,^{ba} and Bruno Dubois^{b,c}

Summary 1 – Amyloid PET in the clinic

- Amyloid PET is a 2nd line mainstay of clinical assessment in memory clinic patients
- Paired with Tau PET it has good predictive value on cognitive progression
- Visual and quantitative assessments are in excellent agreement
- Amyloid PET may be a predictor of clinical efficacy of MAB treatment
- The added value of early perfusion scans in the clinic deserves to be more investigated

Summary 2 – Amyloid PET in development and outlook

PET tracers in clinical trials well suited to vaccine approach for early-stage disease

- Diagnosis of preclinical Alzheimer's disease (up to 10 years before)
- Abeta-PET imaging in clinical trials accelerates the path to approval:
 - Improved patient selection focuses trials on patients with target pathology

> Led to better clinical trials: donanemab trials used PET tracers to improve patient selection

- Objective measurement of disease pathology improved (clear endpoint)
 - > Enabled positive clinical trials: Clarity AD for lecanemab
- Using PET tracers to enhance vaccine development
 - Combining PET and biofluid biomarkers for prognosis of AD (detect AD before symptoms develop)
 - The goal is to enable early vaccination to prevent symptoms/clinical decline
- Outlook on other PET tracers for Tau, a-syn, TDP-43, etc.
 - Developing tracers to detect co-pathologies

The need for Precision Medicine and neuroimaging to diagnose and treat earlier

AC Immune

Marie Kosco-Vilbois, PhD, Chief Scientific Officer

Brain PET¹ imaging is key for precision medicine in NDDs²

(1) Positron emission tomography; (2) Neurodegenerative diseases; (3) Alzheimer's disease; (4) Alpha-synuclein; (5) TAR DNA-binding protein 43; (6) Amyotrophic lateral sclerosis; (7) Limbic-predominant age-related TDP-43 encephalopathy

Precision medicine for early, accurate diagnosis to accelerate development

Complementary diagnostic modalities for rational clinical trial designs

Successfully preventing neurodegenerative diseases requires precision medicine

Combining and optimizing the diagnostic workflow will enable prevention in at-risk subjects

Precision medicine approach enabled by the Morphomer® platform

Developing a suite of PET¹ tracers against emerging targets in NDD²

Leverage our Morphomer[®] small molecule platform:

- Non-peptidic, small molecules with CNS-drug properties for brain penetration
- Conformation-specificity (pathologic protein species)
- Selectivity against co-pathologies (Abeta, Tau, a-syn³, TDP-43⁴)
- Pharmacokinetics suitable for brain PET imaging

(1) Positron emission tomography; (2) Neurodegenerative disease; (3) Alpha synuclein; (4) TAR DNA binding protein-43

Precision medicine approach enabled by the Morphomer® platform

Developing a suite of PET¹ tracers: PI-2620 for Tau

Leverage the Morphomer[®] small molecule platform:

- Non-peptidic, small molecules with CNS-drug properties for brain penetration
- Conformation-specificity (pathologic protein species)
- Selectivity against co-pathologies (Abeta, Tau, a-syn², TDP-43³)
- Pharmacokinetics suitable for brain PET imaging

(1) Positron emission tomography; (2) Alpha synuclein; (3) TAR DNA binding protein-43

Tau-PET¹ imaging: Phase 3 study in AD² and Phase 1 in PSP³

PI-2620 – Potential for best-in-class PET tracer for 3R/4R and 4R tauopathies

 PI-2620 is a Tau selective and disease specific PET tracer for AD and non-AD tauopathies; interventional trials against Tau in PSP will strongly benefit using this biomarker

These results are in contrast to plasma pTau which does not change in tauopathies or dementias other than AD

(1) Positron emission tomography; (2) Alzheimer's disease; (3) Progressive supranuclear palsy; (4) PSP Richardson syndrome; (5) PSP non-Richardson syndrome; (6) Distribution volume ratio

Tau-PET¹ imaging: in MCI² and mild AD³ dementia

PI-2620 visualizes Tau deposition in early AD subjects (a MissionAD Tau sub-study)

- Signal retention for Tau observed in early patient population (>36 CL) with longitudinal follow up revealing a statistically significant increase in Tau deposition over 1 year
- Quantifiable Tau load and its corresponding increase supports the utility of PI-2620 to assess Tau deposits in early AD population

(1) Positron emission tomography; (2) Mild cognitive impairment; (3) Alzheimer's disease

Precision medicine approach enabled by the Morphomer® platform

Developing a suite of PET¹ tracers: ACI-12589 for a-syn²

Leverage the Morphomer[®] small molecule platform:

- Non-peptidic, small molecules with CNS-drug properties for brain penetration
- Conformation-specificity (pathologic protein species)
- Selectivity against co-pathologies (Abeta, Tau, a-syn, TDP-43³)
- Pharmacokinetics suitable for brain PET imaging

(1) Positron emission tomography; (2) Alpha synuclein; (3) TAR DNA binding protein-43

a-syn-PET¹ imaging: [18F]ACI-12589 differentiates MSA² from other NDD³

Occipital cortex as reference region

- [18F]-ACI-12589 retention in cerebellar peduncles clearly differentiates MSA cases from other NDD
- The lack of labelling in the C9orf72 case, a TDP-43-mediated neurodegeneration, serves to support selectivity for pathological a-syn

(1) Positron emission tomography; (2) Multiple System Atrophy; (3) Neurodegenerative disease

a-syn-PET¹ imaging: [18F]ACI-12589 uptake in genetic PD² cases

Differentiation from control subject using cerebellar grey as reference region

- Signal retention is observed in disease-relevant brain regions in genetic PD cases (SNCA duplication carriers)
- The retention is higher in the more advanced symptomatic case
- Signal distribution pattern is compatible with specificity of the signal for pathological a-syn

(1) Positron emission tomography; (2) Parkinson's disease

Precision medicine approach enabled by the Morphomer[®] platform

Developing a suite of PET¹ tracers: ACI-19278 for TDP-43²

Leverage the Morphomer[®] small molecule platform:

- Non-peptidic, small molecules with CNS-drug properties for brain penetration
- Conformation-specificity (pathologic protein species)
- Selectivity against co-pathologies (Abeta, Tau, a-syn³, TDP-43)
- Pharmacokinetics suitable for brain PET imaging

(1) Positron emission tomography; (2) TAR DNA binding protein-43; (3) Alpha synuclein

TDP-43¹-PET² imaging: [³H]ACI-19278 target engagement

High resolution autoradiography with FTLD-TDP³ pathologies

• For the first time, target engagement observed on brain samples with FTLD-TDP type A or B pathology

• Co-localization (arrows) with pTDP-43⁴ antibody (yellow) confirms selectivity for the target

(1) TAR DNA binding protein-43; (2) Positron emission tomography; (3) Frontotemporal lobar degeneration with TPD-43 pathology; (4) phosphorylated TAR DNA binding protein-43

TDP-43¹-PET² imaging: [¹⁸F]ACI-19278 pharmacokinetic profile (PK)

Brain scans after intravenous administration in non-human primates

- Fast washout observed
- All characteristics suitable for advancing into human trials

(1) TAR DNA binding protein-43; (2) Positron emission tomography

AC Immune leadership: first- and best-in-class PET¹ tracers for NDD²

Early and accurate identification of primary pathologies and co-pathologies

PI-2620 is a potential best-in-class PET tracer for 3R/4R and 4R tauopathies

In Q1 2023, partner LMI³ imaged the first patient in ADvance, the pivotal Ph. 3 in AD⁴

[18F]ACI-12589 is the first tracer detecting pathologic a-synuclein in MSA⁶ patients

Tau-PET

Life Molecular Imaging

Newly identified candidates show significantly improved binding properties with potential to detect synucleinopathies including in PD⁷

First-in-class candidate available for IND-enabling studies

First-in-Human trial in FTD patients with GRN mutations planned in Q2 2024

(1) Positron emission tomography; (2) Neurodegenerative disease; (3) Life Molecular Imaging; (4) Alzheimer's disease; (5) Alpha-synuclein; (6) Multiple system atrophy; (7) Parkinson's disease; (8) TAR DNA binding protein-43

Clinical vaccine programs

Johannes Streffer, MD, Chief Medical Officer

Precision Medicine as the cornerstone of ACIU's Clinical Strategy

Enhance value creation through acceleration and de-risking of our portfolio

Precision Medicine

Patient selection and stratification

- Patient populations defined using clinical and biomarker measures to detect disease-specific patterns – Pathology and early detection
- Identify the right time to treat in the disease continuum and stratify patients accordingly

Clinical study design to support fast decision making

- Interim analyses for early de-risking by demonstrating specific antibody response and preference for pathologic protein species
- Early demonstration of biomarkers for accelerated approval reduces development time and de-risks investment

Modelling predicted treatment response

- Advanced modelling informs sample size and power calculations
- Simulation of novel treatment effects on natural disease allows meaningful regulatory discussions

Vaccines as a new class of treatment for neurodegenerative disease

AC Immune vaccines: Potential for profound social and economic impact

Treatment

High efficacy with:

- Multiple epitope targeting
- Long-lasting immune response
- Steady titers
- Favorable safety and tolerability
- Convenient, annual dosing

🖓 Maintenance

- Use as maintenance therapy after monoclonal anti-Abeta antibodies
- Convenient, annual dosing to maintain low plaque levels

Prevention

- Vaccination is the best strategy to preserve function and quality of life
- Cost-effective and global application

Goal: Global vaccines for neurodegenerative diseases

Disruptive potential of SupraAntigen[®]-V

Optimized vaccines delivering superior results in neurodegenerative diseases

- Robust immunogenicity and strong safety demonstrated in humans
- Evidence for lasting immune response supporting a disease prevention approach

(1) 100% response after 1st injection; (2) Increases over time

ACI-24.060: Vaccine targeting two pathological forms of Abeta

ACI-24.060 targets pyroGlu- and oligomeric Abeta, which are believed to drive AD progression

Clinical Stage Programs

TARGET	PRODUCT CANDIDATE	INDICATION	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	PARTNER
Tau	ACI-35.030 (anti-pTau vaccine)	AD ¹ treatment						Janssen
	Semorinemab (anti-Tau antibody)	AD treatment (<i>mild-to-moderate</i>) ²					data H2	Genentech A Member of the Roche Group
	Morphomer [®] Tau aggregation inhibitor	Rare Tauopathies						CRA
		AD treatment						Lilly
	Tau-PET ³ tracer	AD diagnostic						Life Molecular Imaging
		PSP ⁴ diagnostic						Life Molecular Imaging
Abeta	Crenezumab (anti-Abeta antibody)	AD prevention ⁵						Genentech A Member of the Roche Group
	ACI-24.060 (anti-Abeta vaccine)	AD treatment (Down syndrome ⁶)				reported H1	: data H2 ⁹	
		AD treatment						
a-syn ⁷	ACI-7104.056 (anti-a-syn vaccine)	PD ⁸ , a-synucleinopathies				update H	2 E	iologic mall Molecule
	a-syn-PET tracer	a-synucleinopathies (e.g. MSA ¹⁰)						liagnostic

(1) Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alphasynuclein; (8) Parkinson's disease; (9) Refers to expected readouts from a Phase 1b/2 trial of an optimized formulation of ACI-24 (ACI-26.060) in patients with AD and patients with Down syndrome; (10) Multiple system atrophy

AC Immune

Innovative biomarker-based clinical development

Accelerating, while simultaneously de-risking, our clinical programs: Example

(1) Alzheimer's disease; (2) Down syndrome; (3) Positron Emission Tomography; (4) ABATE is the name for the ongoing ACI-24.060 clinical trial

ABATE: Biomarker-based Phase 1b/2 study in AD¹ and AD in DS²

Placebo-controlled Phase 1b/2 Study Overview

Trial Schematic

(1) Alzheimer's disease; (2) Down syndrome-related AD; (3) Positron emission tomography; (4) Clinical Dementia Rating; (5) Interim analyses

Biomarker-based design enhances progress, exemplified by ATE

Novel opportunity by Amyloid PET¹ as accepted surrogate endpoint for accelerated approval

Program de-risking and acceleration²

- Early interim data to demonstrate equipotency of ACI-24.060 with respect to Abeta mAb³
- Opportunity to initiate pivotal program aiming for accelerated approval

Primary prevention in DS⁴

- Individuals with DS are the biggest genetic AD⁵ population, with strongly predictable initiation of amyloid pathology in the brain
- Primary prevention can leverage both population and novel endpoints

Maintenance therapy by a safe and well tolerated vaccine

- mAbs demonstrate clinical effect, but remain challenging for chronic treatment (e.g., frequent infusions and ADA⁶)
- Demonstration of continued amyloid PET lowering to position ACI-24.060 for maintenance

(1) Positron emission tomography; (2) Abate refers to the name of the ACI-24.060 clinical trial; (3) Monoclonal Antibodies; (4) Down syndrome; (5) Alzheimer's disease; (6) Anti-drug antibodies

ACI-35.030: Anti-pTau vaccine being developed for AD¹

Further clinical development in AD and milestone payment expected in H2

Clinical Stage Programs

TARGET	PRODUCT CANDIDATE	INDICATION	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	PARTNER	
Tau	ACI-35.030 (anti-pTau vaccine)	AD ¹ treatment						Janssen)	
	Semorinemab (anti-Tau antibody)	AD treatment (<i>mild-to-moderate</i>) ²					data H2	Genentech A Member of the Roche Group	
	Morphomer [®] Tau aggregation inhibitor	Rare Tauopathies						CRA	
		AD treatment						Lilly	
	Tau-PET ³ tracer	AD diagnostic						Life Molecular Imaging	
		PSP ⁴ diagnostic						Life Molecular Imaging	
Abeta	Crenezumab (anti-Abeta antibody)	AD prevention ⁵						Genentech A Member of the Roche Group	
	ACI-24.060 (anti-Abeta vaccine)	AD treatment (Down syndrome ⁶)				reported H1	; data H2 ⁹		
		AD treatment							
a-syn ⁷	ACI-7104.056 (anti-a-syn vaccine)	PD ⁸ , a-synucleinopathies				update H2		Biologic	
	a-syn-PET tracer	a-synucleinopathies (e.g. MSA ¹⁰)						Diagnostic	

(1) Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alphasynuclein; (8) Parkinson's disease; (9) Refers to expected readouts from a Phase 1b/2 trial of an optimized formulation of ACI-24 (ACI-26.060) in patients with AD and patients with Down syndrome; (10) Multiple system atrophy

🕖 AC Immune

Active immunization for early intervention in Alzheimer's Disease

Preventing Tau spreading and disease progression

 ACI-35.030 induces antibodies targeting the toxic forms of Tau (pTau and ePHF) to prevent spreading of the pathology from cell-to-cell

Next generation anti-phospho Tau (pTau) vaccines

Liposomal ACI-35.030 and conjugate JACI-35.054 vaccines

Phase 1b/2a study ACI-35-1802

Study design for Cohort 1 (ACI-35.030 or placebo)

- Design features
 - Mild AD or MCI due to AD (NIA-AA criteria)
 - Sequential dose cohorts with escalating doses
 - 8 AD subjects per study sub-cohort (active/placebo ratio: 3:1)
 - Sub-cohort 1.2 expanded (active/placebo ratio: 3:1), data available up to week 10

- Primary Objectives
 - Safety and tolerability
 - Immunogenicity
- Study status
 - Study sub-cohorts 1.1 to 1.3 are fully recruited
 - Sub-cohort 1.2 expansion fully recruited

(1) ClinicalTrials.gov Identifier: NCT04445831

Good safety and tolerability¹

- Both ACI-35.030 and JACI-35.054 were safe and well tolerated with no study vaccinerelated safety concerns observed to date
- No withdrawals due to adverse events or adverse events of severe intensity
- No CNS inflammation or other significant changes reported on MRI
- Two SAEs considered unlikely related to the study vaccine reported in the study to date in the first 2 sub-cohorts
 - episode of acute diverticulitis
 - sick sinus syndrome (requiring pacemaker)
- Two safety unrelated study withdrawals in sub-cohort 1.1
 - resulting study data from cohort 1.1 can only be shown until week 10 (2 weeks after 2nd vaccination) to keep study blind

(1) Data cut-off at end of September 2022

ACI-35.030 selected for further development by partner Janssen

Follows data showing ACI-35.030's superior specificity for pathological Tau vs. JACI-35.054

(1) ACI-35.030 original sub-cohort 1.2 data; (2) Enriched paired helical filaments; (3) phosphorylated Tau; (4) Alzheimer's disease; (5) Antibody

Desired antibody response: ACI-35.030¹ compared to JACI-35.054

Superior specificity for pathological Tau

ACI-35.030 antibody response in 100% of patients after 1st injection compared to 50% with JACI-35.054

48

56

ACI-35.030 shows excellent overall performance in elderly patients with outstanding safety and tolerability

NASDAQ: ACIU | KOL Event, April 2023

AC Immune

72

64

AC Immune Clinical Development Strategy

Biomarker-based development will de-risk and accelerate the pipeline

Precision Medicine	 Precise definition of patient populations using biomarkers and clinical parameters Leading with best- and first-in-class targeted imaging agents (e.g., Tau, a-syn³, TDP-43⁴)
Deliver Vaccine Pipeline	 Advance ACI-35.030 into late stage clinical development Accelerate development of ACI-24.060 by including DS¹ as biggest genetic AD² population Progress ACI-7104 anti-asyn Vaccine into phase 1b/2 VACSYN study
Evaluate new business opportunities	 Maintenance: vaccines to reduce disease progression post acute therapy Prevention: vaccines as early first interventions in biomarker-positive, preclinical individuals
Drive Translational Medicine	 Foster translational medicine approach for early signal detection Stronger understanding of treatment response Creating future perspective by inclusion of new technologies

(1) Down syndrome; (2) Alzheimer's disease; (3) Alpha-synuclein; (4) TAR DNA-binding protein 43; (5) amyloid beta; (6) Positron emission tomography

Q&A and closing remarks