

Pioneering Precision Medicine for Neurodegeneration

NASDAQ: ACIU | Investor Presentation, November 2022

Version: 14.11.2022

ww.acimmune.com

Disclaimer

This presentation contains statements that constitute "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune's strategies or expectations. In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "projects," "potential," "outlook" or "continue," and other comparable terminology. Forward-looking statements are based on management's current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions "Item 3. Key Information — Risk Factors" and "Item 5. Operating and Financial Review and Prospects" in AC Immune's Annual Report on Form 20-F and other filings with the Securities and Exchange Commission. These include: the impact of Covid-19 on our business, suppliers, patients and employees and any other impact of Covid-19. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

This presentation is strictly confidential, is being distributed to a limited range of invited persons solely for their own information, may not be distributed to the press or any other person, and may not be reproduced or published, in whole or in part, in any form.

SupraAntigen® is a registered trademark of AC Immune SA in the following territories: AU, CH, EU, GB, JP, RU and SG. Morphomer® is a registered trademark of AC Immune SA in CH, CN, GB, JP, KR, NO and RU.

AC Immune at a glance

Pioneering new ways to treat neurodegenerative diseases

Broad, diversified pipeline in neurodegeneration Six Phase 2 programs; seven clinical readouts in 2022

Key differentiation: Precision medicineIntegrates therapeutics and diagnostics

Multiple global partnerships
>CHF 3 billion in potential milestones

Clinically validated technology platforms
Best-in-class small molecules and biologics

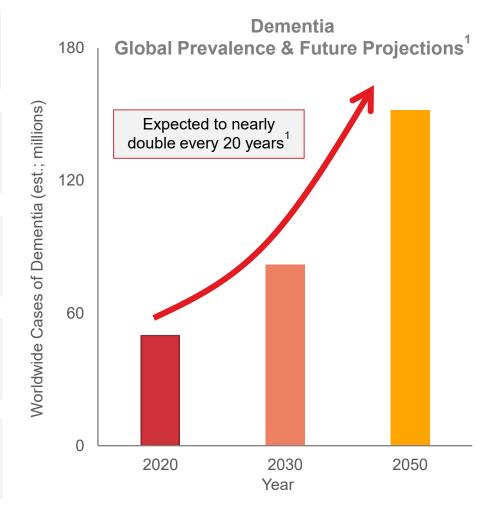
Strong Balance sheet Funded into Q3 2024

- Based in Lausanne, Switzerland
- 145 employees
- Listed September 2016 (NASDAQ: ACIU)
- 83.6 million shares outstanding¹
- Cash of CHF 140.5 million² (~USD 142.6 million)

(1) As of September 30, 2022; excluding treasury shares; (2) As of September 30, 2022

Neurodegenerative diseases represent a large and growing market

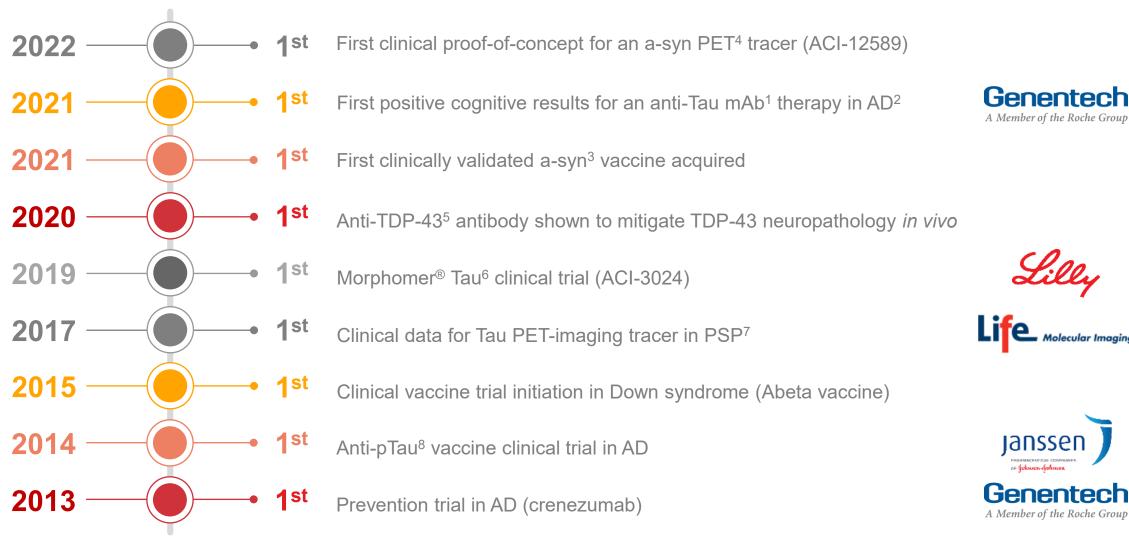
Prevalence expected to increase drastically as the population ages


>50 Million people worldwide living with dementia¹

>\$1 Trillion global annual cost of dementia1

>6 Million people worldwide living with PD^{2,3}

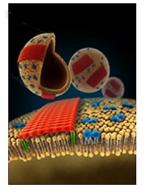
20-50% of people over age 80 with LATE^{4,5}


>8 Million in USA⁶ with different NeuroOrphan diseases

(1) <u>Alzheimer's Disease International</u>; (2) Parkinson's disease; (3) <u>Michael J Fox Foundation</u>; (4) Limbic-predominant age-related TDP-43 encephalopathy; (5) Nelson et al. *Brain* 2019; (6) <u>National Institute of Neurological Disorders and Stroke</u>

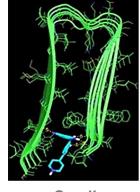
"Firsts" reflect ACIU's leadership in neurodegenerative disease

⁽¹⁾ Monoclonal antibody; (2) Alzheimer's disease; (3) alpha-synuclein; (4) Positron emission tomography; (5) TAR DNA binding protein-43; (6) Small molecule Tau-specific aggregation inhibitor; (7) Progressive supranuclear palsy; (8) Phosphorylated Tau


SupraAntigen® and Morphomer® platforms

An integrated approach to Central Nervous System (CNS)-specific therapies

CNS-optimized


Clinically validated

SupraAntigen®

Vaccines & Antibodies

Morphomer®

Small Molecules

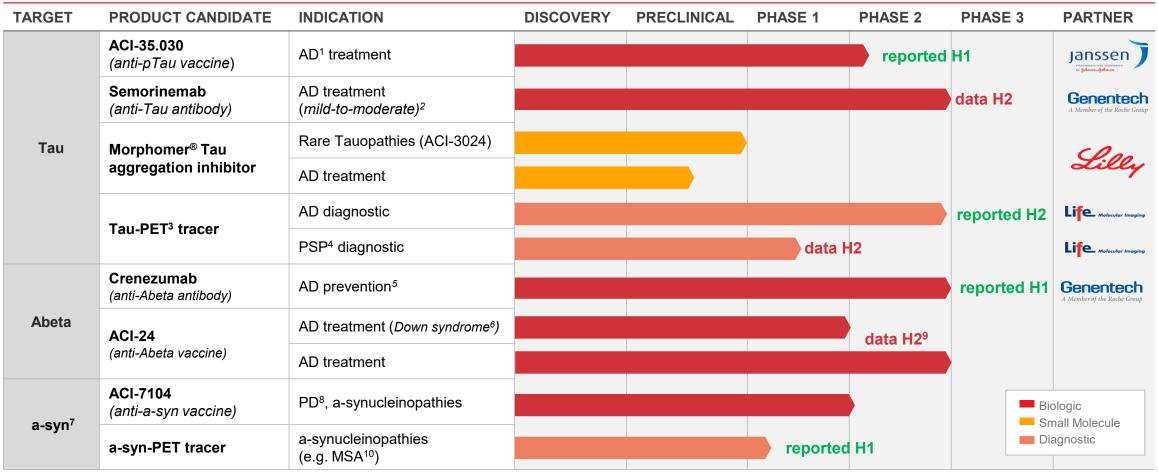
Conformationspecific

Precision medicine enabling

External validation and cash generated by 5 partnering¹ deals

Managing risk and retaining significant upside

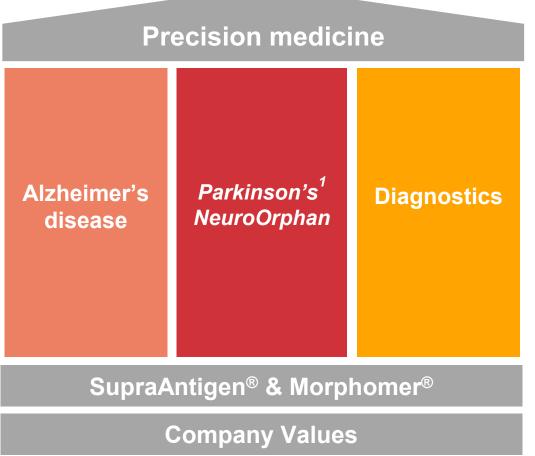
Product	Dev. phase	Total value ²	Upfront ²	Milestones received to date ²	Royalties	Partners
Crenezumab (anti-Abeta antibody)	Phase 2	USD 340	USD 25	USD 40	Mid-single digits to mid-teens	Genentech A Member of the Roche Group
Semorinemab (anti-Tau antibody)	Phase 2	CHF 430	CHF 17	CHF 42	Mid-single digits to low-double digits	Genentech A Member of the Roche Group
ACI-35 (pTau Vaccine)	Phase 1b/2a	CHF 500	CHF 26	CHF 5	Low-double digits to mid-teens	Janssen PREMICIPAL CONSUMER OF Gebusch Gebusch
Tau PET ³ imaging agent	Phase 2 ⁴	EUR 160	EUR 0.5	EUR 7	Mid-single digits to low-teens	Life Molecular Imaging
Tau Morphomer® small molecules	Phase 1 ⁵	CHF 1,860	CHF 80 +USD 50 ⁶	CHF 40	Low-double digits to mid-teens	Lilly
Total (millions) ⁷		CHF ~3,311	CHF 155.28	CHF 132.4		


⁽¹⁾ Disclosure limited due to confidentiality agreements with collaboration partners; (2) In millions; (3) Positron emission tomography; (4) Advanced into late-stage development in AD; (5) Phase 1 completed; (6) Equity investment; (7) Converted to CHF on date of receipt; (8) Excludes convertible note agreement of USD 50 million

Broad and robust pipeline in neurodegenerative diseases

Driven by validated proprietary technology platforms for sustained growth

Clinical Stage Programs



⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Refers to expected readout from a Phase 1b/2 trial of an optimized formulation of ACI-24 in patients with AD and patients with Down syndrome; (10) Multiple system atrophy

Business strategy 2023: acceleration of vaccine and PD¹ portfolio

Focus on delivering Precision Medicine to enhance value creation

Alzheimer's disease

- Accelerate development of novel late-stage therapies with partners
- Accelerate optimized anti-Abeta vaccine development in DS²

Parkinson's and NeuroOrphans

- Broaden strategic activity in other NDD³, e.g. Parkinson's disease
- Genetic FTD⁴/MAPT⁵ population for Morphomer[®] Tau

Diagnostics for precision medicine

• Advance our differentiated diagnostic pipeline for a-synucleinopathies (e.g. MSA⁶) and TDP-43⁷-based pathologies

(1) Parkinson's disease; (2) Down syndrome; (3) Neurodegenerative diseases; (4) Frontotemporal dementia; (5) Microtubule associated protein tau; (6) Multiple system atrophy; (7) TAR DNA-binding protein 43

Precision Medicine driving near- and long-term growth

	Global Leadership	Drives Near and I	Long-term Growth				
	Diverse pipeline	Therapeutics	Precision medicine	New areas Preclinical programs			
	Validated programs	5 clinical programs	2 clinical PET ⁵ tracers				
G O A L S	Key NDD¹ targets: • Tau • Abeta • a-syn² Multiple modalities 4 partnerships	4 clinical readouts in 2022 Tau • 2 Phase 2 (R)³ Abeta • 1 Phase 2 & 1 Phase 1b (R) a-syn • 1 Phase 2 trial (I)⁴	3 clinical readouts in 2022 Clinical • 2 Tau PET tracer (R) • 1 a-syn PET tracer (R) Discovery • TDP-43 ⁶ PET tracer	Emerging targets in NDD: • a-syn • TDP-43 • NLRP3 ⁷ -ASC ⁸			

⁽¹⁾ Neurodegenerative disease; (2) alpha-synuclein; (3) (R) – readout; (4) (I) – initiation; (5) Positron emission tomography; (6) TAR DNA-binding protein 43; (7) (NOD)-like receptor protein 3; (8) Apoptosis-associated speck-like protein containing a CARD, also PYCARD

Clinical catalysts to drive further value creation

Seven clinical data readouts expected in 2022

		20	22	
		H1	H2	
	ACL 25 020 (anti nTau yangina)	⊘		Phase 1b/2a interim analysis (highest dose) of ACI-35.030
	ACI-35.030 (anti-pTau vaccine)			Decision to enter into late-stage development
Tau	Semorinemab (anti-Tau antibody)			Report new Phase 2 Lauriet data (biomarkers)
	Tou DET1 Traces (DL 2000)			Clinical PET study readout in orphan indication
	Tau-PET ¹ Tracer (PI-2620)		Ø	Phase 2 results in AD ²
	AOI 04 000 (4i Ab4i)	Ø		Phase 1b/2 First-Patient-In (AD)
Abeta	ACI-24.060 (anti-Abeta vaccine)			Phase 1b in AD readout and decision to move into DS ³
1	Crenezumab (anti-Abeta antibody)	Ø		Top line results of Phase 2 Alzheimer's prevention trial
/n4	ACI-7104 (anti-a-syn vaccine)			Phase 2 First-Patient-In
a-syn ⁴	a-syn-PET tracer	⊘		First clinical proof of concept in alpha-synucleinopathies (e.g. MSA ⁵)

11


⁽¹⁾ Positron emission tomography; (2) Alzheimer's disease; (3) Down syndrome-related AD; (4) alpha-synuclein; (5) Multiple system atrophy

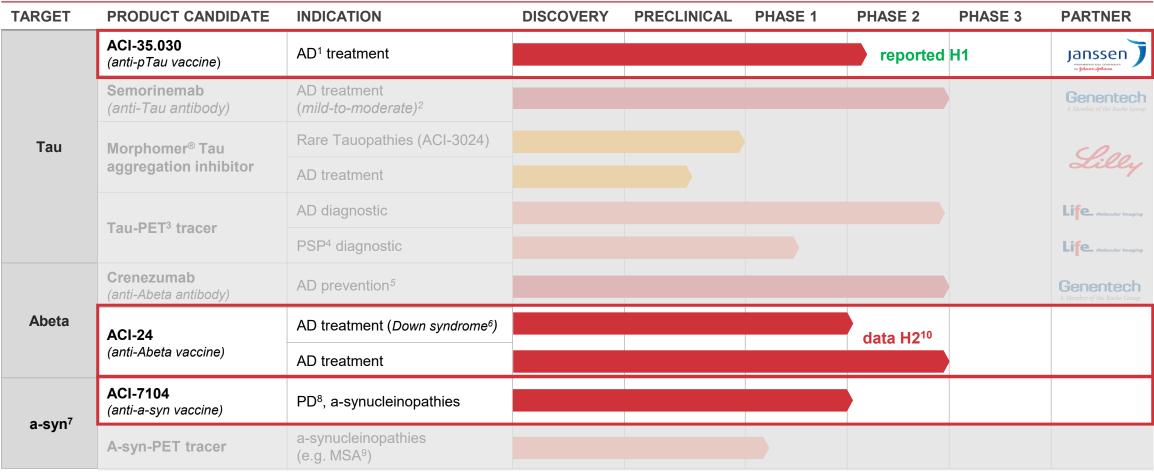
Vaccine programs targeting neurodegenerative diseases

Disruptive potential of SupraAntigen®-V

Optimized vaccines delivering superior results in neurodegenerative diseases

Unprecedented Clinical Performance

Immunogenicity	++++1
Target specificity	++++2
Conformation specificity	+++
Avidity increase over time	+++
Sustainability of response	+++
Boosting	+++
Class switching IgM to IgG	+++
Evidence of memory B cells	+++


- Robust immunogenicity and strong safety demonstrated in humans
- Evidence for lasting immune response supporting a disease prevention approach

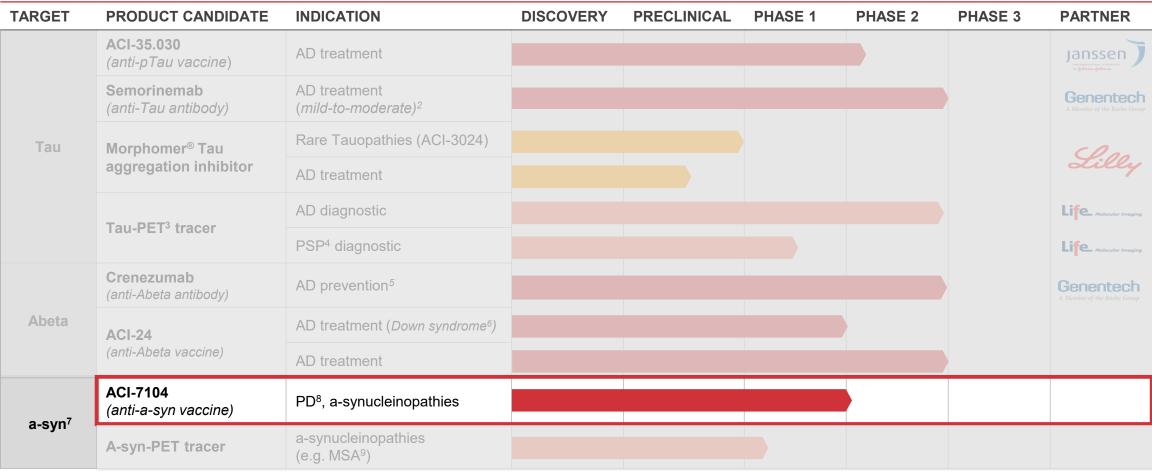
(1) 100% response after 1st injection; (2) Increases over time

Vaccine programs in clinical development

Addressing key targets in Alzheimer's and Parkinson's diseases

Clinical Stage Programs

⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related AD; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy; (10) Refers to expected readout from a Phase 1b/2 trial of an optimized formulation of ACI-24 in patients with AD and patients with Down syndrome



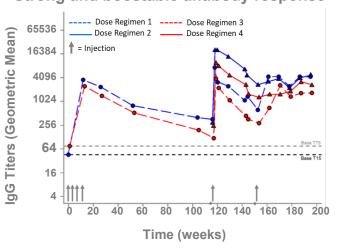
14

ACI-7104: Anti-a-syn vaccine being developed for Parkinson's disease

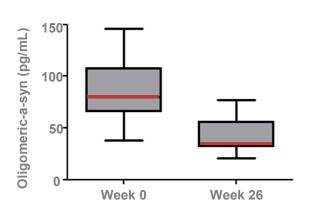
Phase 2 trial initiation expected in H2

Clinical Stage Programs

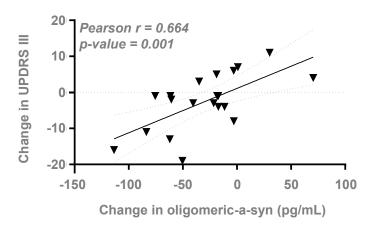
⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy



Anti-a-syn1 vaccine is clinically validated2 in Parkinson's disease


Phase 1 results in *The Lancet Neurology* support best-in-class profile

THE LANCET Neurology



50% reduction³ of pathological a-syn in CSF⁴

Changes⁵ in oligo-a-syn and UPDRS III correlate

Safe and well tolerated with no safety concerns noted in patients followed for more than 3.5 years

3

Target engagement evidence: 50% reduction in pathological (oligomeric) a-syn in the CSF

Strong and boostable antibody responses

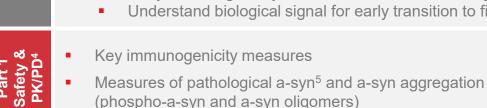
4

Signal of clinical efficacy: stabilization of UPDRS⁶ III scores correlated with reductions in oligomeric a-syn

⁽¹⁾ alpha-synuclein; (2) Volc *et al.*, Lancet Neurol. 2020; (3) Data from 75 µg dose group; (4) Cerebrospinal fluid; (5) Change in oligomeric a-syn calculated at week 26, change in UPDRS III calculated at week 100; (6) Unified Parkinson's Disease Rating Scale

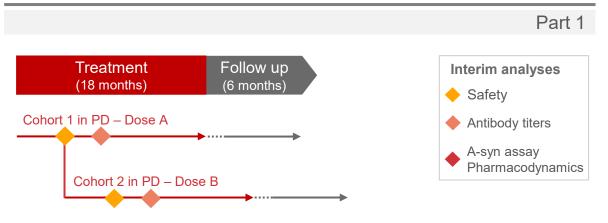
ACI-7104: an adaptive biomarker-based Phase 2 study in early PD1

Placebo-controlled Phase 2 Study Overview


Dosing Schematic

Idiopathic PD; L-Dopa treatment (up to 300 mg per day, stable)
 A diagnosis of PD for 2 years or less at screening (not demented / no cognitive impairment)
 Dopaminergic deficit by DaT SPECT³
 Seamless transition

 All participants from Part 1 will contribute to final analysis

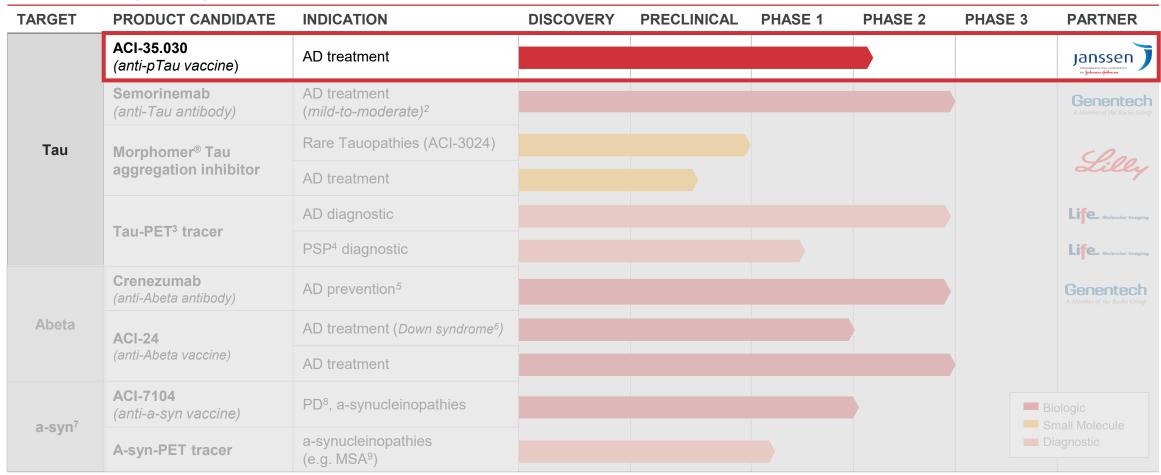

 Biomarker based interim analyses

 Early immunogenicity to tailor dose and/or dose regimen
 Understand biological signal for early transition to filing

Motor and Non-Motor Functioning (UPDRS⁷ based)

- Neurodegeneration of dopaminergic terminals (DaT SPECT imaging)
- Digital biomarkers of motor and non-motor function
- Advanced MRI (including ASL⁸ and DTI⁹)
- Functional and patient reported outcomes

(1) Parkinson's disease; (2) Monoamine Oxidase Type B; (3) Dopamine Transporter Single Photon Emission Computed Tomography; (4) Pharmacokinetics and Pharmacodynamics; (5) alpha-synuclein; (6) Proof-of-concept; (7) Unified Parkinson's disease rating scale; (8) Arterial spin labeling; (9) Diffusion tensor imaging



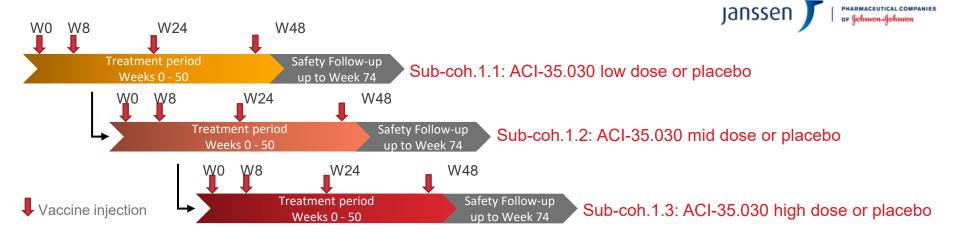
Part 2

Part 2 PoC⁶ in early PD

ACI-35.030: Anti-pTau vaccine being developed for AD1

Clinical Stage Programs

⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy


ACI-35.030 – very encouraging interim Phase 1b/2a results in AD1

AC-35.030

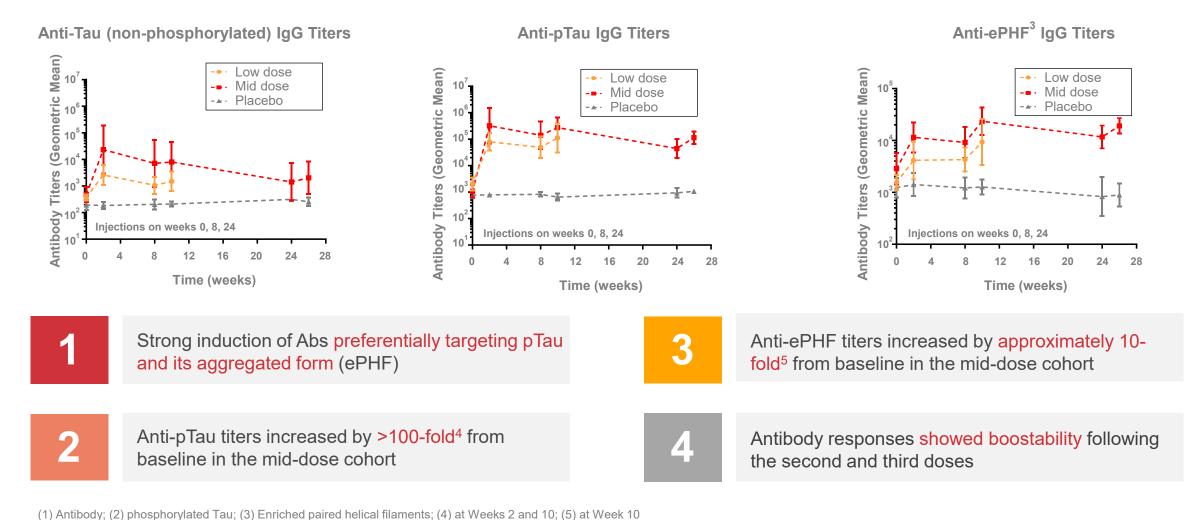
- pTau selective
- T-cell independent (Tau)
- Optimized formulation

Interim results to date in all dose cohorts (safety/tolerability, immunogenicity):

- Anti-Tau IgG response preferentially targeting phosphorylated Tau in all participants
- 100% of participants demonstrated an anti-pTau IgG response³ after the 1st injection
- Anti-pTau IgM response was also elicited in all participants
- Safe and well tolerated, no vaccine-related safety concerns observed to date

Expansion of the second dose cohort to generate additional patient data

Achieved high titers of anti-pTau antibodies in 100% of participants from week 2



Strong safety and robust immunogenicity support advancing to late-stage development

(1) Alzheimer's disease; (2) Clinical Trials in Alzheimer's Disease Conference; (3) Responders were defined as higher than a pretreatment value multiplied by a threshold factor (>~2x)

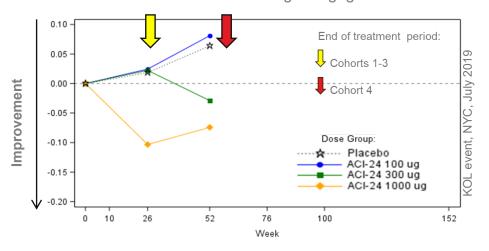
ACI-35.030 generates a potent Ab1 response against pathological Tau

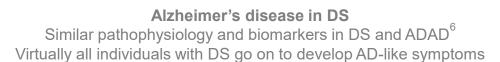
ACI-35.030 generates excellent Ab responses against pTau² in an older population

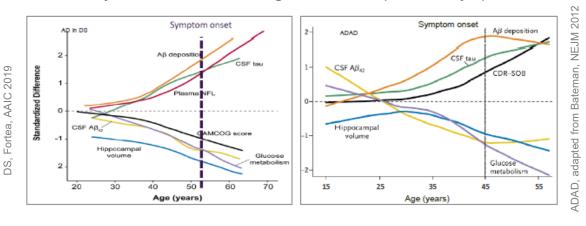
© 2022 AC Immune. Not to be used or reproduced without permission

ACI-24: Vaccine targeting two pathological forms of Abeta for AD1

ACI-24 targets pyroGlu- and oligomeric Abeta, which are believed to drive the progression of AD Clinical Stage Programs


⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Refers to expected readout from a Phase 1b/2 trial of an optimized formulation of ACI-24 in patients with AD and patients with Down syndrome; (10) Multiple system atrophy




ACI-24: Early clinical data support advancement of program

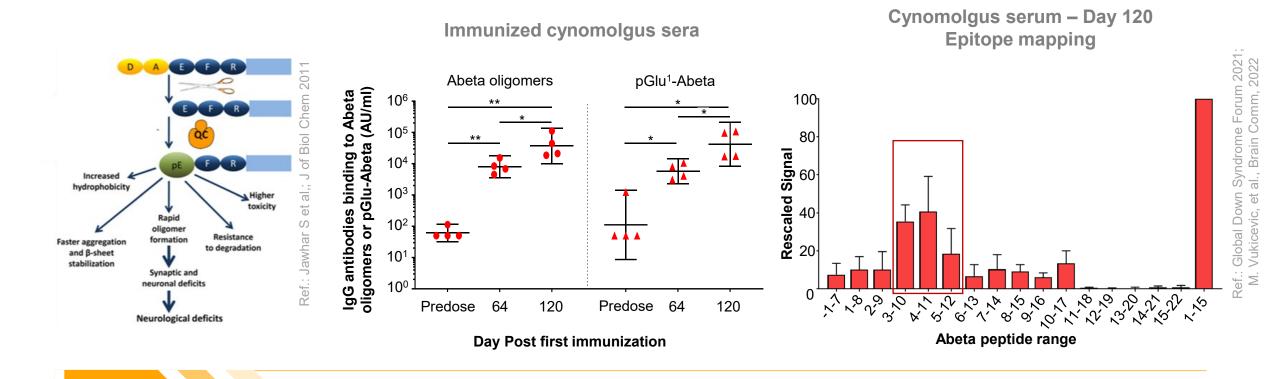
Advancing optimized formulation to the next stage of clinical development in AD² and DS³-related AD

Abeta clearance measured by Abeta PET⁴
Change in composite summary SUVR-MCG⁵
Clinical evidence of target engagement

Dose-dependent reduction of brain Abeta accumulation in a Phase 1b/2 trial in AD⁷

Encouraging immunogenicity: generated anti-Abeta antibodies in patients with AD & individuals with DS

3


Positive pharmacodynamic response (increase in plasma Abeta) in a Phase 1b trial in DS

4

Safe and well tolerated with no treatment-related SAEs⁸ in clinical trials in AD⁹ and DS¹⁰

⁽¹⁾ Pyroglutamate Abeta; (2) Alzheimer disease; (3) Down syndrome; (4) Positron emission tomography; (5) Standardized Uptake Value Ratio-Mean Cerebellar Gray; (6) Autosomal dominant Alzheimer's disease; (7) Phase 1b/2 clinical trial in AD (trial ACI-0701); (8) Serious adverse events; (9) Phase 2 clinical trial in AD (trial ACI-1801); (10) Phase 1b clinical trial in DS (trial ACI-1301)

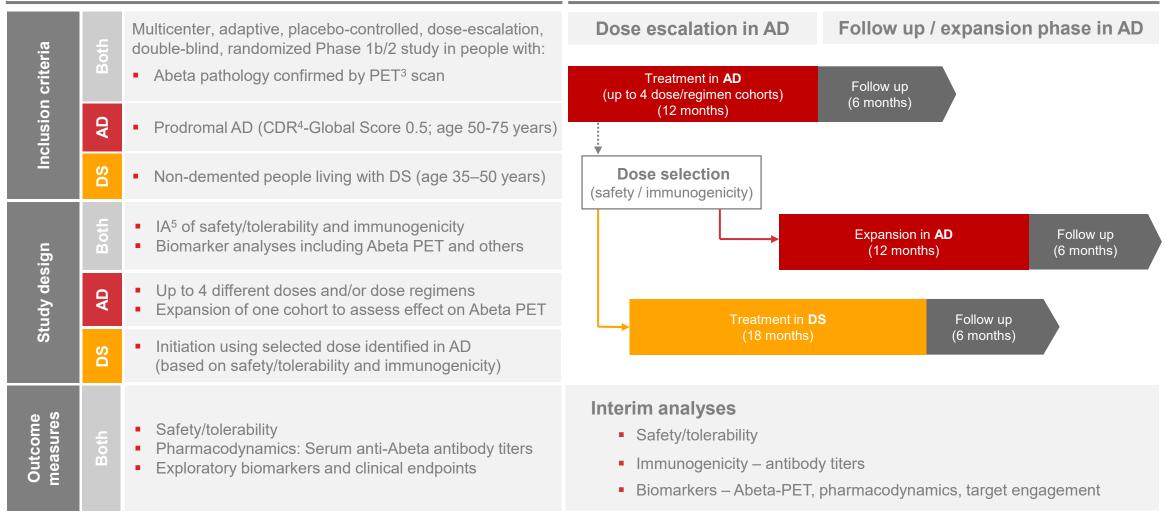
Optimized anti-Abeta ACI-24: Strong immune response against pyroglutamate Abeta

* p<0.05, ** p<0.01

NASDAQ: ACIU | Investor Presentation, November 2022

23

neurotoxic, truncated form of pathological Abeta


Sustained and enhanced IgG response that binds Abeta(1-42) and pyroglutamate Abeta, the highly

The optimized vaccine represents a potential breakthrough compared to previous anti-Abeta vaccines

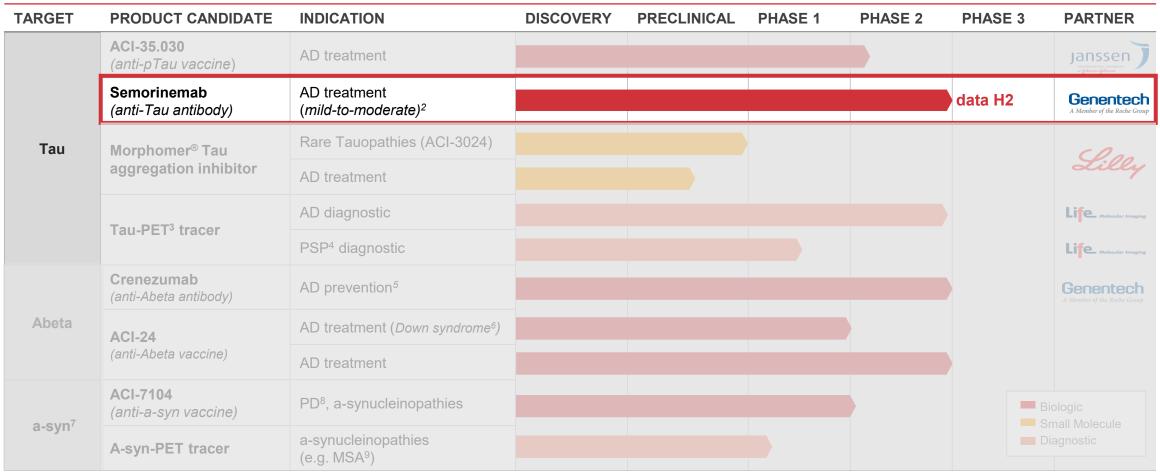
ACI-24.060: Biomarker-based development in AD¹ and AD in DS²

Placebo-controlled Phase 1b/2 Study Overview

Trial Schematic

(1) Alzheimer's disease; (2) Down syndrome-related AD; (3) Positron emission tomography; (4) Clinical Dementia Rating; (5) Interim analyses

24



Clinical-stage monoclonal antibodies targeting neurodegenerative diseases

Semorinemab: Anti-Tau monoclonal antibody being developed for AD¹

New Phase 2 biomarker and open-label extension data expected in H2 2022

Clinical Stage Programs

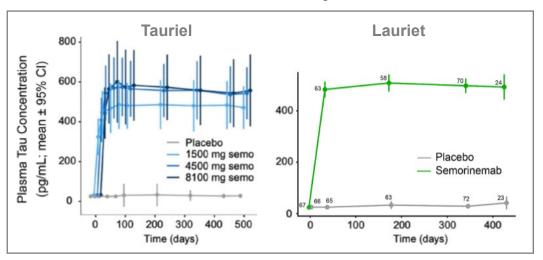
(1) Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy

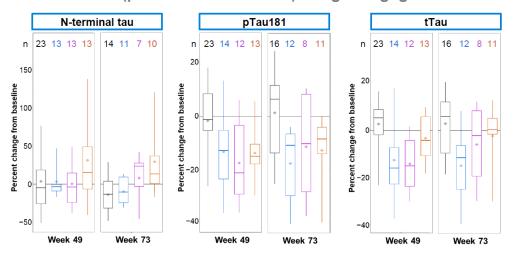
Lauriet study evaluating the mAb¹ semorinemab in mild-to-moderate AD²

One co-primary endpoint met: first positive cognitive results for an anti-Tau mAb therapy in AD

- Observed a statistically significant 2.89 point (42.2%) reduction in cognitive decline vs. placebo as measured by ADAS-Cog11³ at week 49 (p=0.0008)
- ADCS-ADL⁴ co-primary endpoint and secondary efficacy endpoints (MMSE⁵; CDR-SB⁶) were not met; treatment effect on Tau PET⁷ signal was not observed
- Semorinemab was well tolerated with an acceptable safety profile and no unanticipated safety signals
 - ADAS-Cog11 findings were consistent at week 619
 - Lauriet open label extension continues and biomarker analyses of semorinemab's effect on soluble forms of pathological Tau are ongoing

First evidence of therapeutic impact on cognition for a disease-modifying anti-Tau mAb in mild-to-moderate AD patients⁸


(1) Monoclonal antibody; (2) Alzheimer's disease; (3) Alzheimer's Disease Assessment Scale, Cognitive Subscale, 11-item Version; (4) Alzheimer's Disease Cooperative Study - Activities of Daily Living; (5) Mini-mental state exam; (6) Clinical Dementia Rating-Sum of the Boxes; (7) Positron emission tomography; (8) MMSE of 16-21; (9) In the subset of patients for whom the double-blind treatment period was extended to 60 weeks.


Key findings from Phase 2 trials of semorinemab in AD¹

Data provide further support for Tau as a target in AD

Plasma Tau Pharmacodynamic Data²

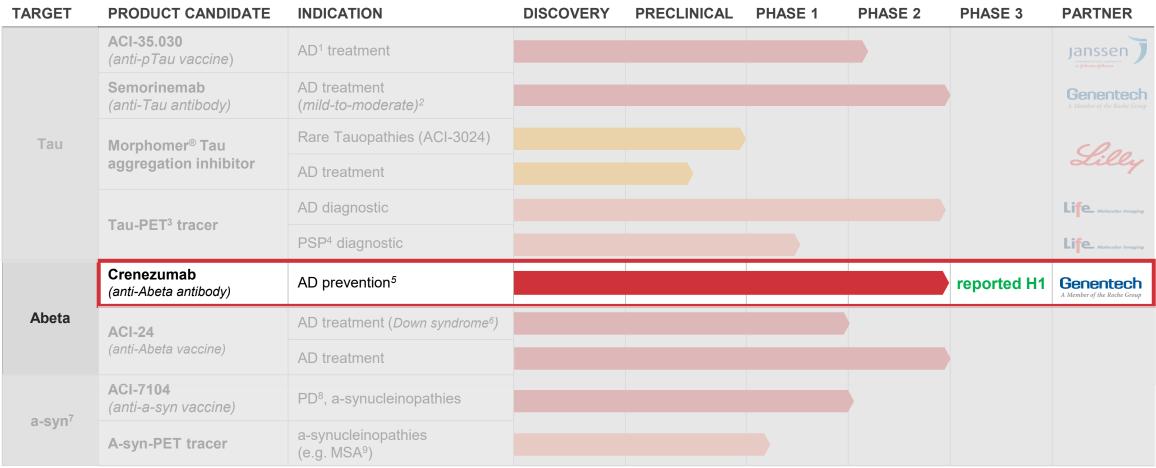
Tauriel Trial (prodromal-to-mild AD): Target Engagement Data

CSF exposure tertile

Low (180-1800 ng/mL) Mid (2020-4020 ng/mL) High (4040-7830 ng/mL

- Significant semorinemab treatment effect on cognition in a patient population where limited or no effect of anti-Abeta mAbs is observed
- Semorinemab treatment effect observed in Lauriet was consistent across prespecified subgroups

Tauriel's CSF³ biomarker analyses confirm target engagement despite lack of clinical effect in prodromal to mild AD. Lauriet's CSF analyses are ongoing


Data from Lauriet study support the importance of soluble forms of pathological Tau in driving cognitive decline and warrant further analysis

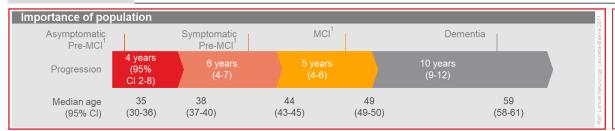
28

Crenezumab: Monoclonal anti-Abeta antibody being developed for AD¹

Top line results from foremost Alzheimer prevention trial expected in H1 2022

Clinical Stage Programs

⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy



Crenezumab: Alzheimer Prevention Initiative (API-ADAD1) trial

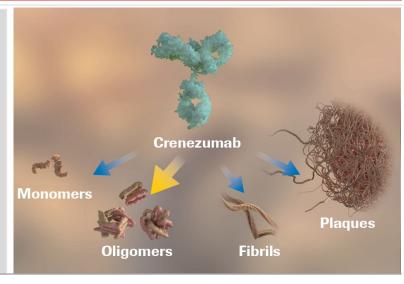
Landmark Alzheimer prevention trial

Patient population

- Colombian family clan with Paisa mutation leading to Abeta accumulation and early onset AD²
- Largest autosomal-dominant AD cohort
- Nearly 100% certainty of disease development due to a PSEN-1³ gene mutation
- Unique opportunity to study prevention and treatment in defined population

Pioneering Alzheimer's study in Colombia zeroes in on enigmatic protein

Researchers tracking a genetic mutation that causes an early-onset form of the disease hope to uncover new drug targets.



Study design

Phase 2 double-blind, placebo-controlled study

- 252 subjects were enrolled with MMSE ≥ 24^x or >26^y
- 169 mutation carriers randomized equally (1:1) to crenezumab or placebo; 83 non-carriers received a placebo
- Two primary cognitive endpoints measuring rate of change over at least 260 weeks (and up to approx. 416 weeks);
 - API-ADAD Composite Cognitive Test Total Score
 - Free and Cued Selective Reminding Test (FCSRT)
- Secondary endpoints: Safety, time to MCI⁴; biomarkers (Abeta PET⁵, FDG⁶ PET, Tau PET, CSF⁷, and blood-biomarkers)
- Study started December 2013

Mechanism targeting Abeta oligomers

Note: X: less than 9 years of education; Y: more than 9 years of education; (1) Alzheimer's Prevention Initiative – Autosomal-Dominant Alzheimer's disease; (2) Alzheimer's disease; (3) Presenilin-1; (4) Mild cognitive impairment; (5) Positron emission tomography; (6) Fluorodeoxyglucose; (7) Cerebrospinal fluid

Presented at the 2022 Alzheimer's Association International Conference (AAIC)

API¹ study of crenezumab in familial AD²: clinical endpoints

Consistent numerical differences favor crenezumab vs. placebo, but are not statistically significant

Outcome	Carrier	Relative Reduction	P value*				95%	CI			
Clinical											•
API ADAD Composite	168	22.9%	0.43					-		l	
FCSRT Cueing Index	168	19.9%	0.16				+	-	\dashv		
Time to MCI/dementia due to AD	168	20.8%	0.48		\vdash			-			
CDR Sum-of-Boxes	168	8.8%	0.64						\dashv		
Time to non-Zero in CDR-GS	150	8.1%	0.76		<u> </u>				\dashv		
RBANS Total Score	168	43.8%	0.55				+		-		\rightarrow
				-100 -75	5 -50	-25	0	1 25	50	75	100
				← F	avors pla	acebo		Favor	s cren	ezumal	→

The consistent direction of changes on all clinical outcomes supports an effect of crenezumab

Presented at the 2022 Alzheimer's Association International Conference (AAIC)

API¹ study of crenezumab in familial AD²: biomarker endpoints

Consistent numerical differences favor crenezumab vs. placebo, but are not statistically significant

Outcome	Carrier	Relative Reduction	P value*		95	% CI			
Biomarker									•
Aβ PET (Florbetapir SUVR)	168	3.6%	0.69		H	-			
Tau PET (ERC GTP1 SUVR)	83	51.1%	0.20	\vdash			-		\rightarrow
FDG PET (sROI FDG SUVR)	168	18.1%	0.25		\vdash	-	\dashv		
CSF pTau181	84	37.4%	0.28			——	-	—	
CSF tTau	90	28.7%	0.53					——	
CSF NfL	90	18.2%	0.46		 	-	——		
				-100 -75 -50	-25 0	25	50	75	100
				Favors place	ebo	Favor	s crene	zumal)

- Consistent numerical differences on biomarker measures correlate with clinical endpoint observations
- Relative 51.1% reduction in Tau-PET (ERC³) is notable and aligned with all other Tau markers

API¹ study evaluating crenezumab in familial AD²

Numerical differences favoring crenezumab vs. placebo observed, which were not statistically significant

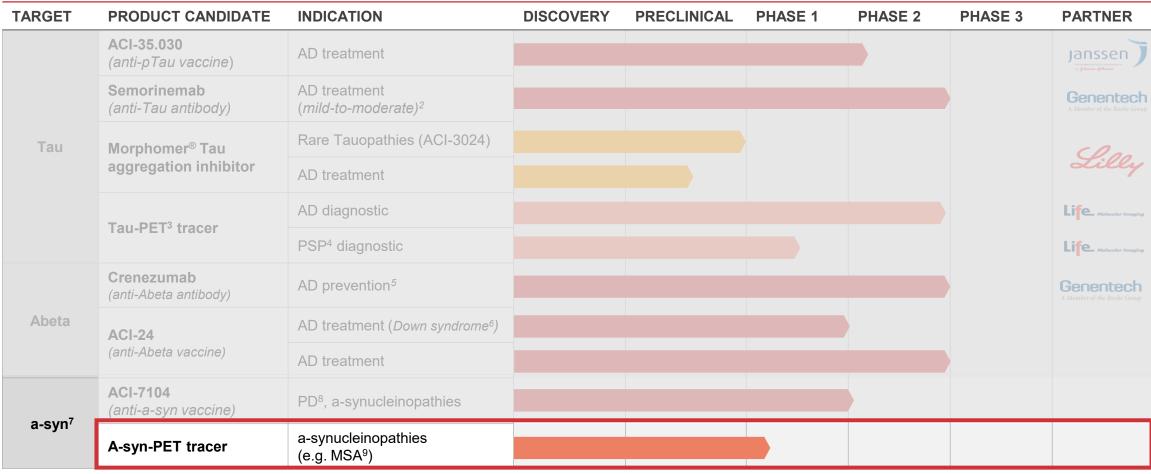
- Crenezumab did not statistically significantly slow or prevent cognitive decline in the API study.
- Numerical differences favoring crenezumab observed across coprimary, multiple secondary, and exploratory endpoints.
- Crenezumab was generally well tolerated, with no new safety issues or cases of ARIA-E³ observed
- Patients from the trial can continue receiving crenezumab in a blinded extension of the study while Roche further analyzes data.
 - Study had limited statistical power to determine if treatment with crenezumab at the optimal dose would have a clinical benefit

THE VANISHING MIND

Alzheimer's Stalks an Extended Family in Colombia

New York Times, June 2010

(1) Alzheimer's Prevention Initiative; (2) Alzheimer's disease; (3) Amyloid-related imaging abnormalities refers to cerebral edema; (4) Alzheimer's Association International Conference

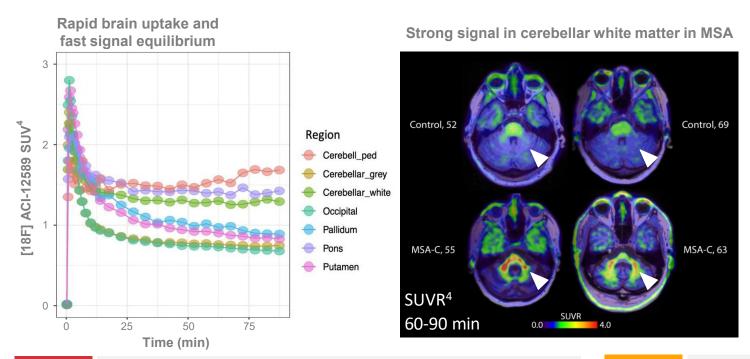

Alpha-synuclein PET tracer

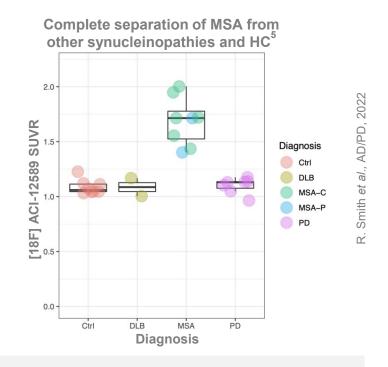
ACI-12589

ACI-12589: a-syn PET tracer

Positive clinical proof-of-concept

Clinical Stage Programs




⁽¹⁾ Alzheimer's disease; (2) Open label extension study is ongoing; (3) Positron emission tomography; (4) Progressive supranuclear palsy; (5) Prevention trial API-ADAD in Colombia; (6) Down syndrome-related Alzheimer's disease; (7) alpha-synuclein; (8) Parkinson's disease; (9) Multiple system atrophy

ACI-12589 - positive clinical proof-of-concept for an a-syn¹-PET² tracer

First-in-class diagnostic for MSA³ and monitoring a-syn drug target engagement

- ACI-12589 shows rapid brain uptake and fast signal equilibrium
- Clearly separates MSA from other a-synucleinopathies with strong binding in expected regions (cerebellum)

ACI-12589 displays selectivity for a-syn over Abeta and Tau, and no relevant binding to MAO-B⁶

Ready for full development in MSA and enables future applications in PD⁷ with ACI-12589 or next-gen tracers

(1) alpha-synuclein; (2) Positron emission tomography; (3) Multiple system atrophy; (4) Standardized uptake value; (5) Healthy controls; (6) Monoamine oxidase B; (7) Parkinson's disease

3

Clinical catalysts to drive further value creation

Seven clinical data readouts expected in 2022

		20	22	
		H1	H2	
	ACL 25 020 (anti nTau yangina)	⊘		Phase 1b/2a interim analysis (highest dose) of ACI-35.030
	ACI-35.030 (anti-pTau vaccine)			Decision to enter into late-stage development
Tau	Semorinemab (anti-Tau antibody)			Report new Phase 2 Lauriet data (biomarkers)
	Tou DET1 Traces (DL 2000)			Clinical PET study readout in orphan indication
	Tau-PET ¹ Tracer (PI-2620)		Ø	Phase 2 results in AD ²
	ACL 24 0C0 (anti-Abata vasasina)	Ø		Phase 1b/2 First-Patient-In (AD)
Abeta	ACI-24.060 (anti-Abeta vaccine)			Phase 1b in AD readout and decision to move into DS ³
1	Crenezumab (anti-Abeta antibody)	Ø		Top line results of Phase 2 Alzheimer's prevention trial
/n4	ACI-7104 (anti-a-syn vaccine)			Phase 2 First-Patient-In
a-syn ⁴	a-syn-PET tracer	⊘		First clinical proof of concept in alpha-synucleinopathies (e.g. MSA ⁵)

⁽¹⁾ Positron emission tomography; (2) Alzheimer's disease; (3) Down syndrome-related AD; (4) alpha-synuclein; (5) Multiple system atrophy

Acceleration of value creation in 2022 and beyond

Leading with Science

First- or best-in-class candidates

Precision Medicine

Developing integrated diagnostics and therapeutics for single or combination therapies

Enabling Platforms

Fuel development pipeline & create growth opportunities

Execution Strategy

Partnerships for latestage AD¹ assets; retain program lead until Ph 3 or further in other programs

Financial Strength

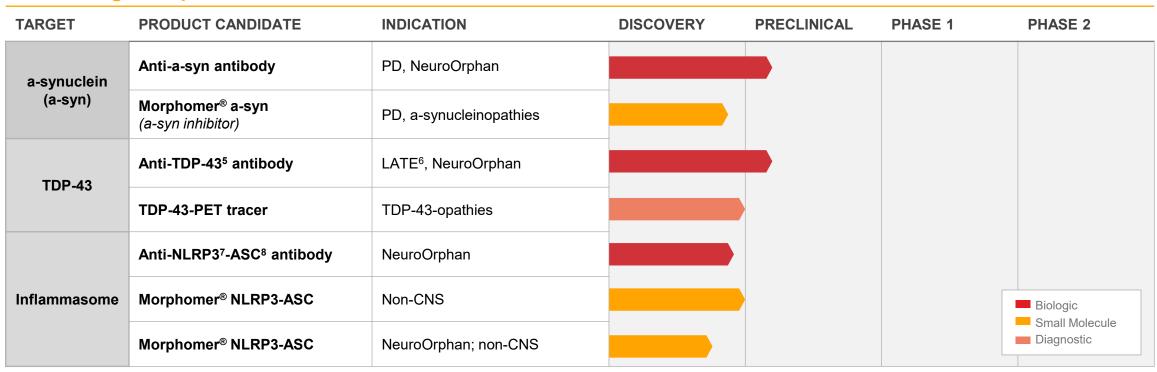
Substantial partnership revenues & vision to become a fully integrated commercial company

Advancing world-class science to develop breakthrough therapies for neurodegenerative diseases

(1) Alzheimer's disease

AC Immune: pioneering science and precision medicine

Shifting the treatment paradigm¹ for neurodegenerative disease towards precision medicine and disease prevention



Supplementary information

Broad and robust pipeline in neurodegenerative diseases

Diversification into non-AD¹ and non-CNS² diseases

Novel Targets Pipeline

⁽¹⁾ Alzheimer's disease; (2) Central nervous system; (3) Parkinson's disease; (4) Positron emission tomography; (5) TAR DNA-binding protein 43; (6) Limbic-predominant age-related TDP-43 encephalopathy; (7) (NOD)-like receptor protein 3; (8) Apoptosis-associated speck-like protein containing a CARD, also PYCARD

41