

NASDAQ: ACIU | March 31, 2021

Disclaimer

This presentation contains statements that constitute "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are statements other than historical fact and may include statements that address future operating, financial or business performance or AC Immune's strategies or expectations. In some cases, you can identify these statements by forward-looking words such as "may," "might," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "projects," "potential," "outlook" or "continue," and other comparable terminology. Forward-looking statements are based on management's current expectations and beliefs and involve significant risks and uncertainties that could cause actual results, developments and business decisions to differ materially from those contemplated by these statements. These risks and uncertainties include those described under the captions "Item 3. Key Information – Risk Factors" and "Item 5. Operating and Financial Review and Prospects" in AC Immune's Annual Report on Form 20-F and other fillings with the Securities and Exchange Commission. These include: the impact of Covid-19 on our business, suppliers, patients and employees and any other impact of Covid-19. Forward-looking statements speak only as of the date they are made, and AC Immune does not undertake any obligation to update them in light of new information, future developments or otherwise, except as may be required under applicable law. All forward-looking statements are qualified in their entirety by this cautionary statement.

This presentation is strictly confidential, is being distributed to a limited range of invited persons solely for their own information, may not be distributed to the press or any other person, and may not be reproduced or published, in whole or in part, in any form.

Welcome

Today we will provide a comprehensive overview of AC Immune's clinically validated Morphomer™ small molecule technology platform and our pipeline of Morphomer-derived therapeutic and diagnostic candidates

Driving progress toward precision medicine for neurodegenerative diseases

Agenda

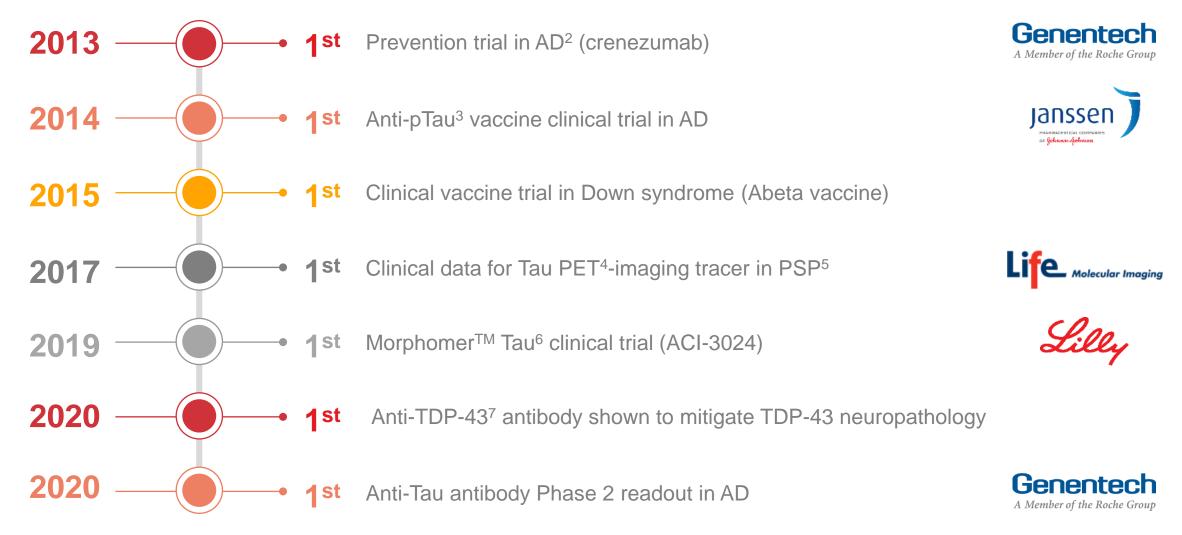
Introduction	Joshua Drumm, PhD Head of Investor Relations
Strategy & Pipeline Overview	Andrea Pfeifer, PhD Chief Executive Officer
Morphomer™ Platform Introduction	Marie Kosco-Vilbois, PhD Chief Scientific Officer
Therapeutic CNS ¹ Molecules	Sonia Poli, PhD Life Cycle Leader
PET ² Imaging Agents	Francesca Capotosti, PhD Group Leader In Vivo Pharmacology and Non-Clinical Safety
Conclusion and Q&A	Andrea Pfeifer, PhD Chief Executive Officer

AC Immune

Strategy and pipeline overview

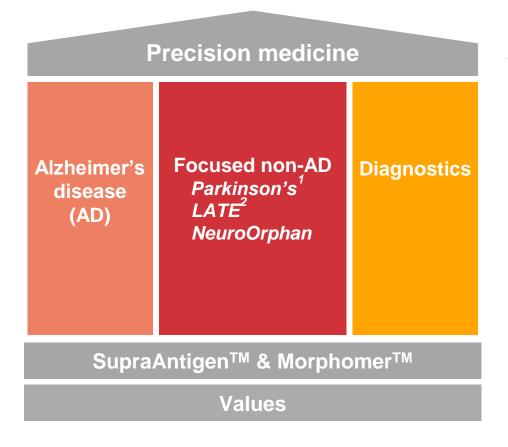
Andrea Pfeifer, PhD, Chief Executive Officer

AC Immune investment highlights


Pioneering precision medicine for neurodegenerative diseases

- Largest healthcare market
 - Diversified approach targeting traditional and novel targets; five Phase 2 candidates
 - Multiple near-term catalysts in large and orphan indications
 - Validating partnerships
 - Generated CHF 334 million to date; more than raised from investors
 - CHF 3 billion in total potential milestones plus royalties
 - Genentech¹, Janssen and Eli Lilly deals and five prestigious grants validate platform technologies
 - Clinically validated SupraAntigenTM and MorphomerTM platforms
 - Fuel proprietary pipeline e.g. preclinical assets: a-syn², TDP-43³, NLRP3⁴
 - Drive value creation from existing and <u>future</u> partnerships
 - Enable precision medicine
- Precision medicine strategy
 - First- and/or best-in-class companion diagnostic products
 - Better clinical trials due to selection of defined patient populations
- CHF 225.9 million in cash funds operations through Q1 2024⁵
 - Multiple meaningful value inflection points
 - Continuous investment into newly validated targets

(1) A member of the Roche group; (2) Alpha-synuclein; (3) TAR DNA-binding protein 43; (4) (NOD)-like receptor protein 3; (5) As of December 31, 2020


"Firsts" reflect ACIU's leadership in NDD1

⁽¹⁾ Neurodegenerative diseases; (2) Alzheimer's disease; (3) Phosphorylated Tau; (4) Positron emission tomography; (5) Progressive supranuclear palsy; (6) Small molecule Tau-specific aggregation inhibitor; (7) TAR DNA binding protein-43

Execution of our three-pillar strategy: the 2021 focus

Alzheimer's disease

- Accelerate development of phospho-Tau vaccine with partner Janssen
- Prioritize development of small molecule Tau aggregation inhibitor with partner Lilly

Non-AD and NeuroOrphans

- Advance Abeta vaccine in Down syndrome³ to late stage; seek partner for AD
- Advance anti-TDP-43⁴ mAb⁵ in NeuroOrphan indications (ALS⁶, FTLD-TDP⁷)
- Accelerate a-syn⁸ small molecule in Parkinson's disease
- Develop NLRP3⁹ assets in CNS¹⁰ and non-CNS indications

Diagnostics for precision medicine

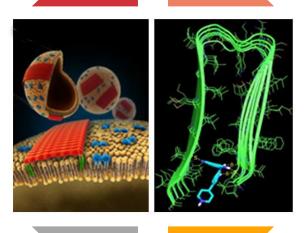
- Advance differentiated diagnostic pipeline (Tau, a-syn, TDP-43) to late stage
- Early detection, improved clinical trials and marked differentiation

⁽¹⁾ Parkinson's disease; (2) Limbic-predominant age-related TDP-43 encephalopathy, a TDP-43-dependent dementia that affects 20%-50% of individuals >80 years old; (3) Down syndrome- related Alzheimer's disease; (4) TAR DNA-binding protein 43; (5) Monoclonal antibody; (6) Amyotrophic lateral sclerosis; (7) Frontotemporal lobar degeneration with TDP-43 pathology; (8) Alpha-synuclein; (9) (NOD)-like receptor protein 3; (10) Central nervous system

Morphomer[™] and SupraAntigen[™] platforms

An integrated approach to CNS¹-specific therapies

CNS-optimized


- Rapid generation of therapeutics and diagnostics for novel CNS targets
 - Small molecules with excellent BBB² passage and intracellular mechanism of action
 - Safe, T-cell-independent vaccines
 - Highly specific (low nM to pM) monoclonal antibodies

Conformation specific

- High selectivity for pathological forms of target proteins
- Strong safety profile

Clinically validated

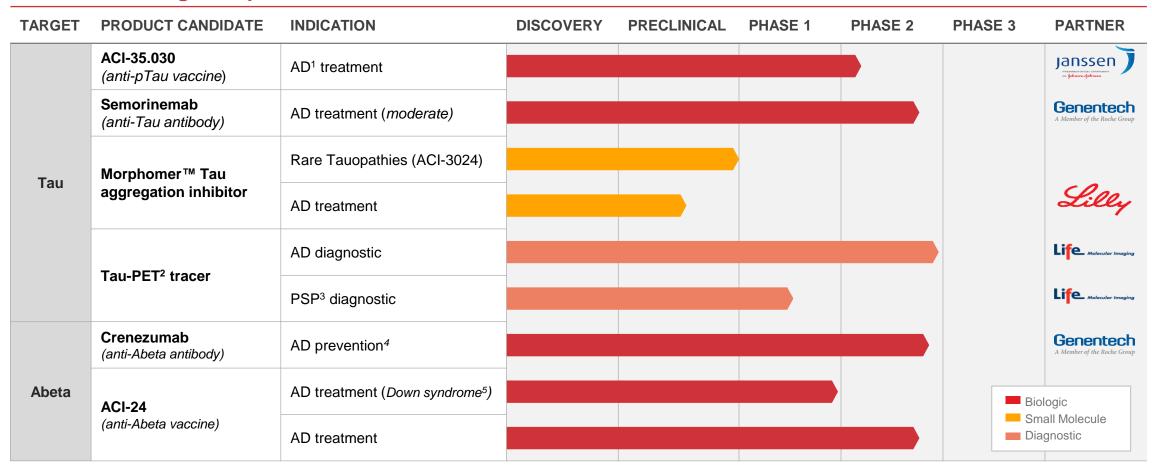
- 2 Monoclonal antibodies
- 2 Liposomal vaccines
- 1 Small molecule
- 2 PET³ tracers

Precision medicine enabling

- First-/best-in-class companion diagnostics
 - Earlier, more reliable diagnosis
 - Treatment according to underlying pathology
 - Prevention through early, safe intervention

⁽¹⁾ Central nervous system; (2) Blood-brain barrier; (3) Positron emission tomography

Positioned for precision medicine

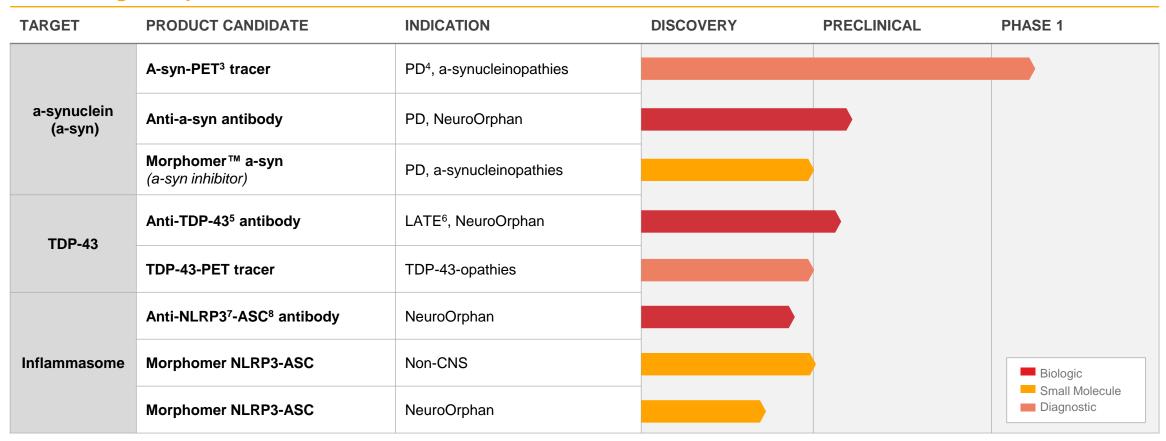

Suite of novel therapeutics and diagnostics enable differentiated approach

Clinically validated technology Therapeutic product Diagnostic product platforms fuelling future growth candidates candidates Key molecular Candidates in Collaborations with major targets addressed clinical trials pharmaceutical companies

Broad and robust pipeline in neurodegenerative diseases

Driven by validated proprietary technology platforms for sustained growth

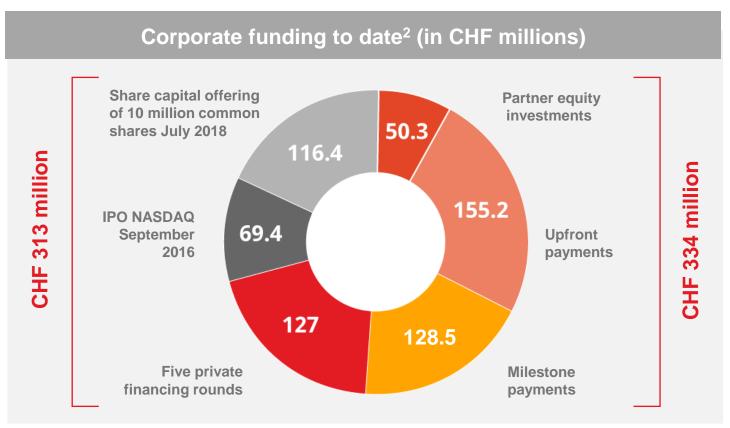
Established Targets Pipeline


(1) Alzheimer's disease; (2) Positron emission tomography; (3) Progressive supranuclear palsy; (4) Prevention trial API-ADAD in Colombia; (5) Down syndrome-related Alzheimer's disease

Broad and robust pipeline in neurodegenerative diseases

Diversification into non-AD¹ and non-CNS² diseases

Novel Targets Pipeline



⁽¹⁾ Alzheimer's disease; (2) Central nervous system; (3) Positron emission tomography; (4) Parkinson's disease; (5) TAR DNA-binding protein 43; (6) Limbic-predominant age-related TDP-43 encephalopathy; (7) (NOD)-like receptor protein 3; (8) Apoptosis-associated speck-like protein containing a CARD, also PYCARD

Substantial funds from partnerships complement equity investments

- CHF 313 million from investor funds
- CHF 334 million in partnering related funds^{3,4}
- CHF 3 billion in total potential payments plus potential royalties outstanding

(1) Based on latest schedule 13G and 13F filings; (2) Converted to CHF based on exchange rates at times of receipt; (3) Milestone payments as of June 30, 2020; (4) With Lilly convertible loan

Broadest anti-Tau pipeline has generated CHF 264 million in cash

Product candidates	Therapies and Diagnostics:			
	antibody	vaccine	small molecule	diagnostic
		White o		
Current focus ¹	AD^2	AD	AD, NeuroOrphan	AD, PSP ³
Partner	Genentech A Member of the Roche Group	Janssen PHARMACHINGAI COMPANIPA OF STANCEN STANCEN	Lilly	Life Molecular Imaging
Cash received	CHF 59 million	CHF 31 million	CHF 170 million	EUR 3.5 million

⁽¹⁾ Programs can be expanded into additional Tauopathies; (2) Alzheimer's disease; (3) Progressive supranuclear palsy

14

Spotlight on key Morphomer™ licensing deals¹

Proprietary pipeline assets carry substantial future deal value

Therapeutic: Tau Morphomer small molecules (in millions)			
Total value	CHF 1,860		
Upfront payment	CHF 80 + USD 50 equity investment		
Milestones received to date	CHF 40		
Next milestone	CHF 60 at Phase 2 start		
Royalties	Low-double digits to mid-teens		
Partner	Lilly		

Diagnostic: Tau PET imaging agent (in millions)			
Total value (millions)	EUR 160		
Upfront payment	EUR 0.5		
Milestone received to date	EUR 3		
Royalties	Mid-single digits to low teens		
Partner	Life Molecular Imaging		

⁽¹⁾ Disclosure limited due to confidentiality agreements with collaboration partners

Substantial market & partnership opportunities for novel targets pipeline

Combination of very large and NeuroOrphan indications

Large Indications			
Alzheimer's disease	Parkinson's disease	LATE ⁵	
Prevalence: Affects 50M globally ¹	Prevalence: >6.1M globally ⁴	Prevalence: 20-50% of individuals over age 806	
Tau, NLRP3 ² -ASC ³	a-synuclein, NLRP3-ASC	TDP-43 ⁷	
Partner (Tau): Lilly NLRP3-ASC: AC Immune	Therapeutic: Diagnostic:	Therapeutic: Diagnostic:	

NeuroOrphan Indications			
Progressive Supranuclear Palsy	Multiple System Atrophy	Amyotrophic Lateral Sclerosis	Frontotemporal Lobar Degeneration
Prevalence: ~20K in U.S.8	Prevalence: 15-50 K in U.S. ⁹	Prevalence: 15-30K in U.S. ^{10,11}	Prevalence: 20-30K in U.S. ¹²
Tau	a-synuclein	TDP-43	TDP-43
Therapeutic: with partners Partner (diagnostic): Life Molecular Imaging	Therapeutic: AC Immune Diagnostic:	Therapeutic: Diagnostic: AC Immune	Therapeutic: Diagnostic:

⁽¹⁾ The World Alzheimer Report 2019; (2) (NOD)-like receptor protein 3; (3) Apoptosis-associated speck-like protein containing a CARD, also called PYCARD (4) GBD 2016 Parkinson's Disease Collaborators *Lancet Neurology* 2018; (5) Limbic-predominant age-related TDP-43 encephalopathy; (6) Nelson et al. *Brain* 2019; (7) TAR DNA-binding protein 43; (8) National Institute of Neurological Disorders and Stroke (NINDS) Progressive Supranuclear Palsy Fact Sheet; (9) NINDS Multiple System Atrophy Fact Sheet; (10) ALS Association *Rare Disease* 2013; (11) NINDS Amyotrophic Lateral Sclerosis Fact Sheet; (12) Knopman and Roberts *J. Mol. Neurosci.* 2011

Drivers of value creation in 2021 and beyond

Accelerate late-stage clinical development

- ACI-35.030 in Alzheimer's disease (partnered with Janssen)
- ACI-24 in Down syndrome (wholly owned)

Focus on NeuroOrphans

Accelerate development of anti-TDP-43¹ antibodies and small molecule
 Tau aggregation inhibitor candidates in NeuroOrphan indications

Expand Morphomer[™] Platform

- Prioritize development of small molecule portfolio, e.g. a-syn²
- Generate companion diagnostic for precision medicine

Advance neuroinflammation

- Maximize value of neuroinflammation programs
- Expand strategic focus within and beyond CNS³

Sustained financial strength

- Further enhance financial strength
- Explore regional / global partnerships in specific programs

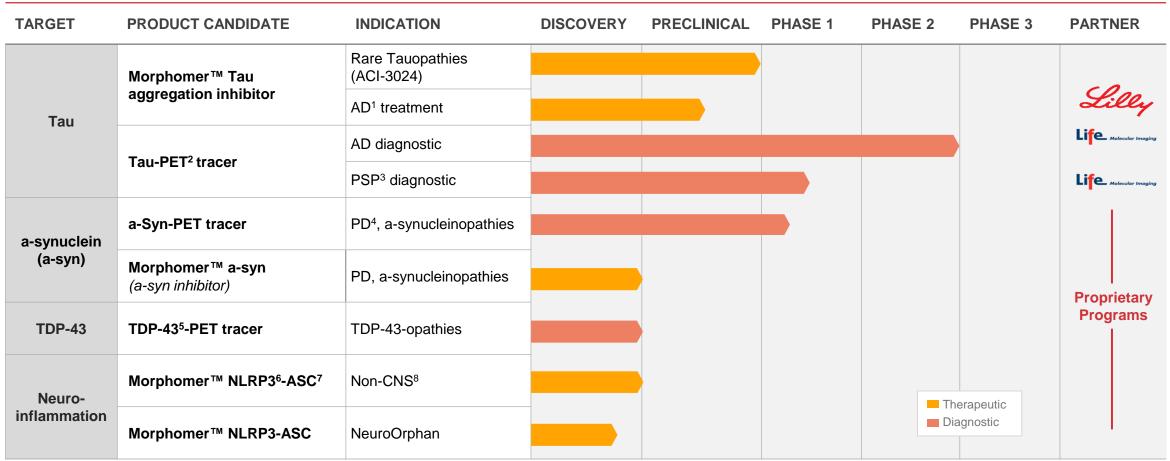
(1) TAR DNA-binding protein 43; (2) Alpha-synuclein; (3) Central nervous system

Morphomer[™] platform introduction

Marie Kosco-Vilbois, PhD, Chief Scientific Officer

Proprietary Morphomer[™] technology

CNS¹ drug discovery and development platform


- Robust library of conformation-specific, non-peptidic small molecules with desirable CNS¹ properties constructed and continually refined and expanded over many years
- Comprehensive screening, rational design and early validation processes rapidly generate highly specific hit compounds
- Clinically validated with two diagnostic and one therapeutic candidates

Morphomer[™] pipeline in neurodegenerative diseases

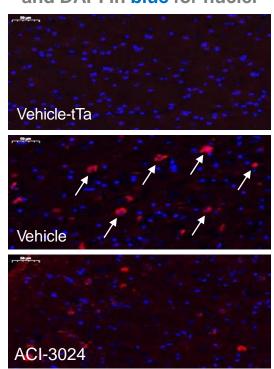
Enables multiple high-value therapeutic and diagnostic opportunities

Morphomer[™] programs

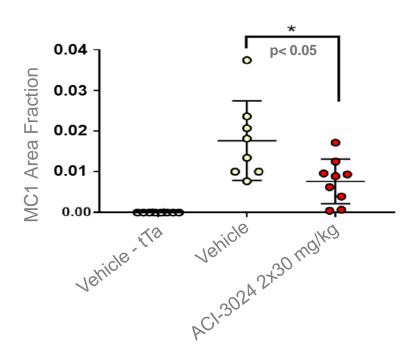
⁽¹⁾ Alzheimer's disease; (2) Positron emission tomography; (3) Progressive supranuclear palsy; (4) Parkinson's disease; (5) TAR DNA-binding protein 43; (6) (NOD)-like receptor protein 3; (7) Apoptosis-associated speck-like protein containing a CARD, also called PYCARD; (8) Central nervous system

Morphomer™: Key advantages/benefits

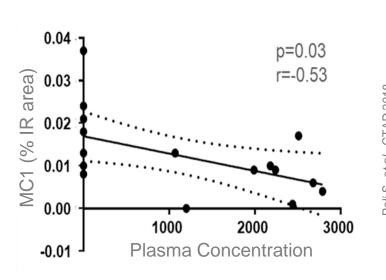
Innovating development with first- and best-in-class candidates


- CNS¹-optimized compounds with favorable brain penetration and pharmacokinetics
- Rationally designed, highly selective candidates bind intracellular protein aggregates
- Focused library of ~12,000 conformation-specific compounds reflecting years of research know-how
- Proprietary suite of assays to identify and validate successful compounds
 - Broadly applicable for potentially disease-modifying therapeutics and precision diagnostics

(1) Central nervous system

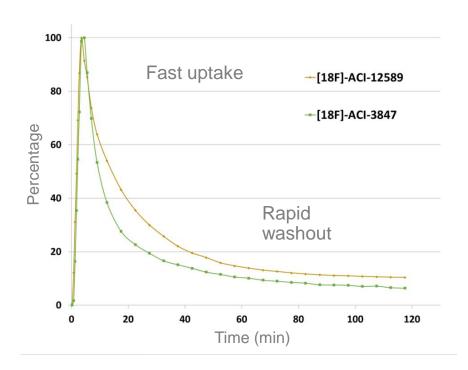

CNS¹-optimized compounds with favorable brain penetration

Disaggregation capacity of Tau aggregation inhibitor, ACI-3024, in brains of Tg4510 mice


IHC² with MC1 in red for misfolded Tau and DAPI in blue for nuclei

Area of misfolded Tau levels in brain sections

MC1 area correlates with drug concentration



- Treatment with ACI-3024 significantly reduced misfolded Tau in the brains where the pathology is manifested
- The decrease was proportional to the plasma exposure to ACI-3024

(1) Central nervous system (2) Immunohistochemistry

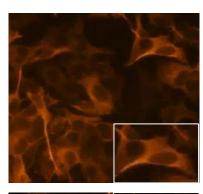
CNS¹-optimized compounds with favorable pharmacokinetics

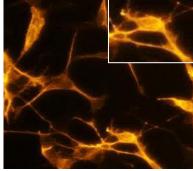
Ideal pharmacokinetic profile for a-syn² tracers in non-human primates

	Brain uptake (min to C _{max})	Brain uptake (%ID³/g)	Remaining at 120 min (% of C _{max})
ACI-12589	3.5	4.3	10
ACI-3847	4.5	2.6	6

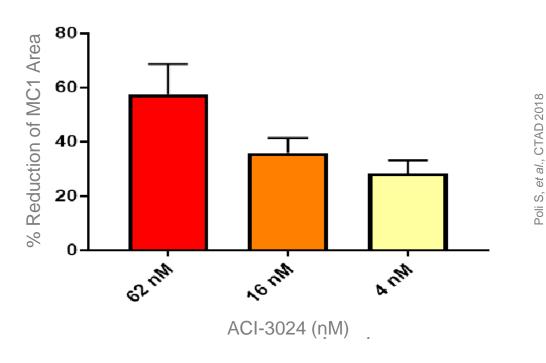
Both candidates display a pharmacokinetic profile in non-human primates suitable for use as brain PET⁴ tracers with good and fast brain uptake, homogeneous distribution as well as rapid and complete washout

(1) Central nervous system (2) Alpha-synuclein (3) Injected dose; (4) Positron emission tomography


Rationally designed candidates inhibit intracellular protein aggregates

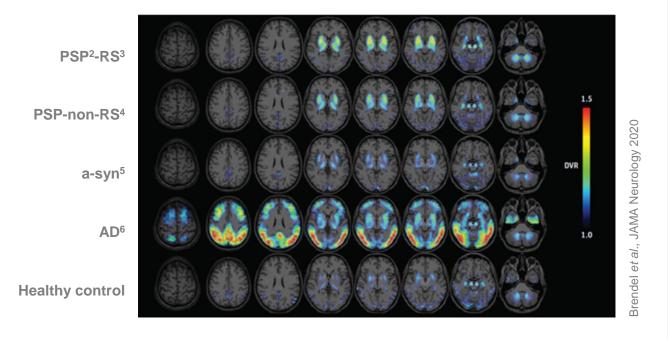

Assessing intracellular Tau misfolding in vitro using a human neuroblastoma cell line

Intracellular labeling of misfolded Tau (MC1)


Undifferentiated cells

Differentiated
neurons expressing
Tau P301L
(retinoic acid
induced)

Dose-dependent reduction of misfolded Tau



Potent intracellular effect in vitro, demonstrating dose-dependent inhibition in the generation of pathological Tau

Rationally designed, highly selective candidates to differentiate NDDs¹

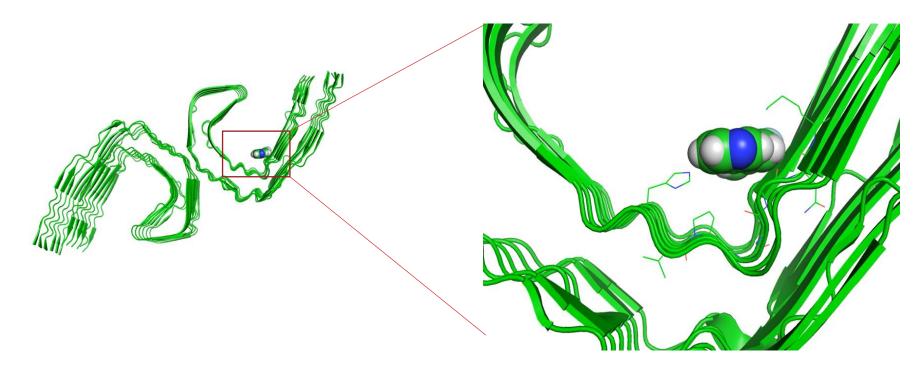
Average distribution volume ratio (DVR)

JAMA Neurology | Original Investigation

July 7, 2020

Assessment of ¹⁸F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy

Matthias Brendel, MD, MHBA¹; Henryk Barthel, MD, PhD²; Thilo van Eimeren, MD^{3,4,5}; et al


- PI-2620 PET imaging can detect and assess PSP pathology in vivo to establish an earlier and more reliable diagnosis
- Differentiation at the single patient level by semi-quantitative and visual classification (sens./spec. for PSP-RS >80%)

(1) Neurodegenerative diseases; (2) Progressive supranuclear palsy; (3) Richardson syndrome; (4) PSP non-Richardson syndrome; (5) Alpha-synucleinopathies; (6) Alzheimer's disease

Focused library of ~12,000 conformation-specific compounds

Model illustrating the binding pocket of Morphomers™ to the beta sheets of Tau aggregates

- Initially 5000 compounds, now expanded to ~12, 000
- Consistently delivers small molecules that can be used to generate therapeutic and imaging agents for Tau, a-syn and TDP-43

Focused library reflecting years of research know-how

In-house medicinal chemists

41

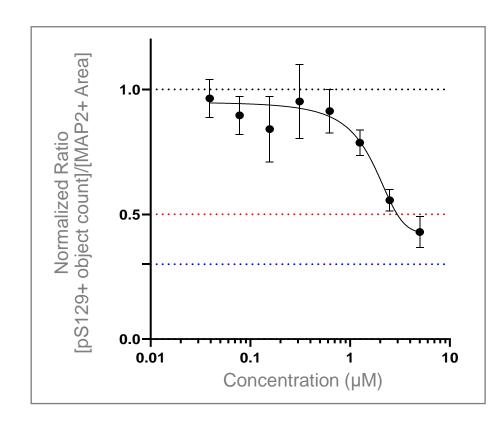
Outsourced chemistry FTEs¹

115

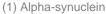
Collective years of medicinal chemistry experience

70

In-house biologists

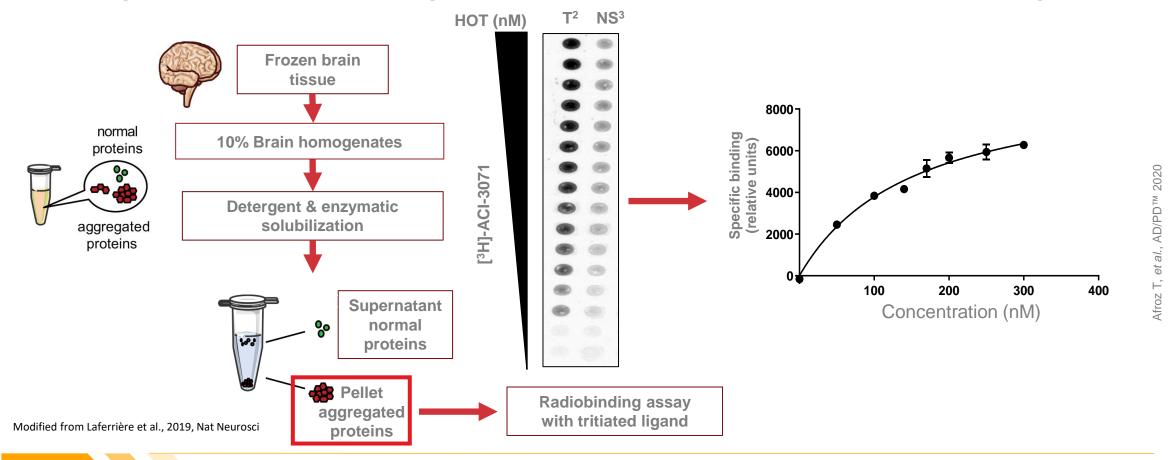

(1) Full-time equivalents

Proprietary suite of assays to identify and validate candidates


Screening for a-syn¹ MorphomersTM via intracellular target engagement

MorphomerTM (5μM) No treatment Rat cortical primary neurons

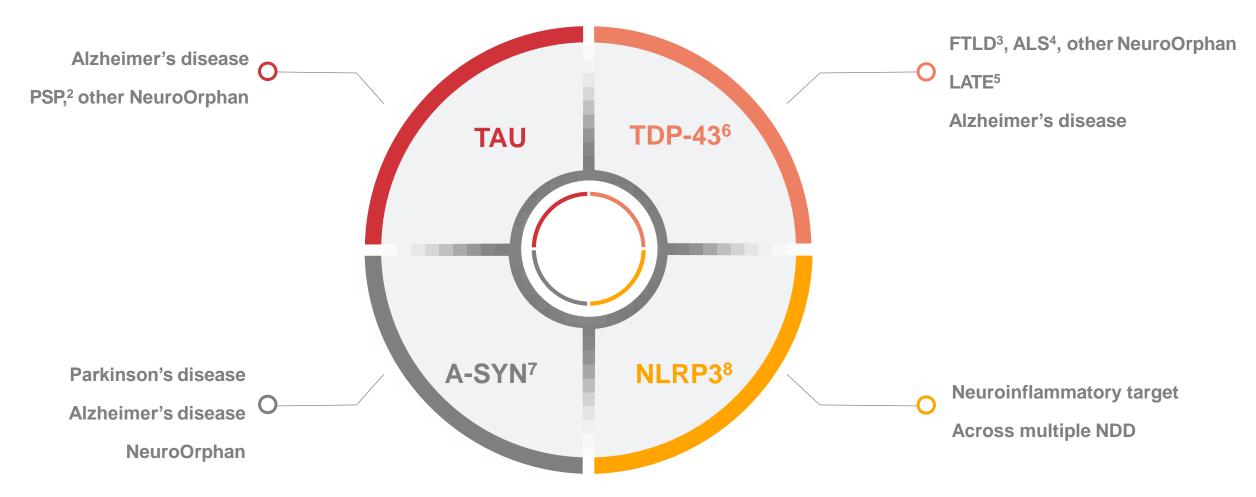
aSyn pS129 Neurons (MAP2) Nuclei



- Developed a proprietary model of a-syn aggregation using primary neurons
- Provides data to establish a candidate's capacity to prevent *de novo* aggregate formation

Proprietary suite of assays to identify and validate candidates

Screening for TDP-43¹ tracers using patient-derived tissue and competitive radiobinding

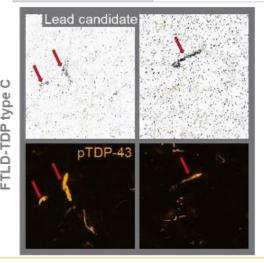


- Protocol isolates pathological TDP-43 from enriched patient-derived aggregates
- Essential to determine compound affinity for pathological aggregates in proprietary micro-radiobinding assays

MorphomerTM candidates address key pathologies

Only company with a suite of therapeutics and diagnostics against all major targets in NDD1

⁽¹⁾ Neurodegenerative disease; (2) Progressive supranuclear palsy; (3) Frontotemporal lobar degeneration; (4) Amyotrophic lateral sclerosis; (5) Limbic-predominant age-related TDP-43 encephalopathy; (6) TAR DNA-binding protein 43; (7) Alpha-synuclein; (8) NOD-like receptor protein 3



TDP-43¹: growing understanding underscores need and opportunity

No diagnostic or therapeutic intervention directly targeting TDP-43 available or in clinic

- RNA/DNA-binding protein that functions as a regulator of gene transcription and RNA metabolism
- Cytoplasmic aggregation of TDP-43 is a major pathology in Alzheimer's disease and several other NDDs²
- Strongly related to cognitive decline³ and episodic memory loss⁴
- LATE⁵ is a recently defined and highly prevalent TDP-43 pathology that causes age-related dementia that strongly mimics Alzheimer's disease8

	Indication	% TDP-43
NouroOrphon	Amyotrophic lateral sclerosis	97%6
NeuroOrphan	Frontotemporal lobar degeneration	45% ⁶
Large Market	Alzheimer's disease	50% ⁷
	LATE	100%8

Target engagement by **TDP-43 PET tracer candidate** Afroz T, *et al.*, AD/PD™ 2021

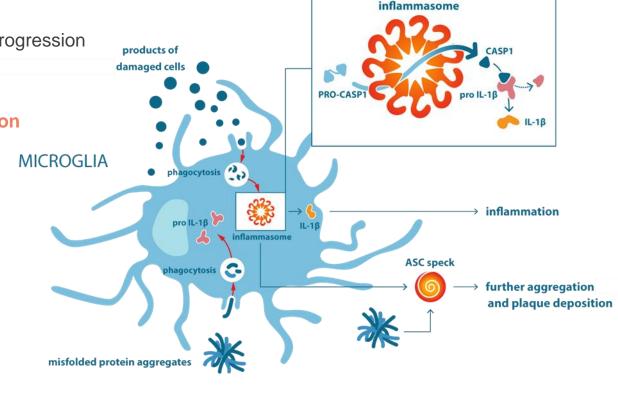
- TDP-43 is a critical primary target and co-pathology in NeuroOrphan and large CNS indications
- ACIU's first-in-class diagnostics and therapeutics are substantial value creation opportunities

(1) TAR DNA-binding protein 43; (2) Neurodegenerative diseases; (3) Wilson et al., 2013; (4) Nag et al., 2017; (5) Limbic age-related TDP-43 encephalopathy; (6) Ling et al., 2013; (7) Josephs et al., 2014; (8) Schneider AD/PD 2020

Therapeutic potential in targeting microglia and NLRP3¹-ASC² pathway

Reducing neuroinflammation through multiple mechanisms

Immune modulation shows great potential in NDD³

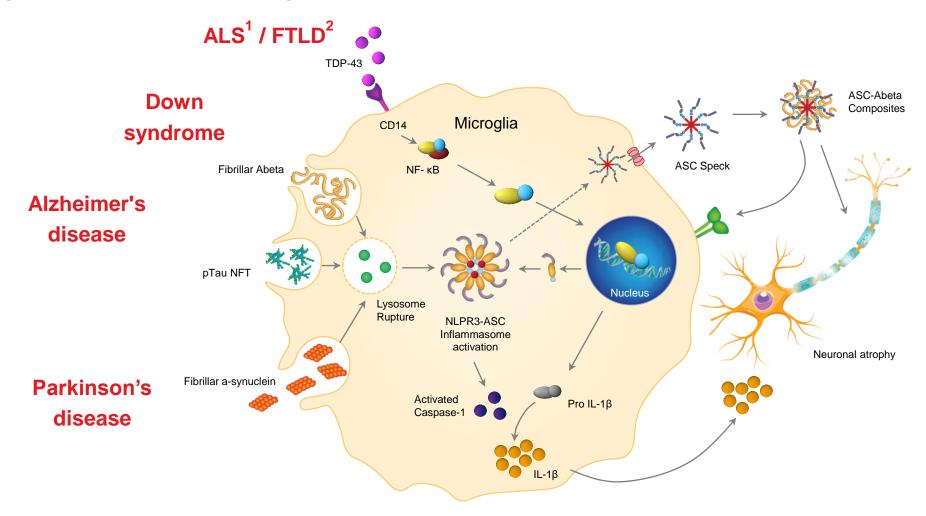

- Hyperstimulated microglia are emerging as a hallmark in NDD
- Hyperstimulation drives inflammation, neuronal death and disease progression

ACIU targets the NLRP3-ASC pathway to reduce neuroinflammation

- Maintain phagocytosis of misfolded proteins
- Decrease pro-inflammatory factors
- Do not alter diffuse mechanisms (side effects)

NLRP3-ASC pathway addressed with two approaches

- Intracellular NLRP3 activity (SMEs⁴)
- Extracellular ASC specks (mAbs⁵)



Adapted from R. Ransohoff, Nature 2017, 342, 552

(1) (NOD)-like receptor protein 3; (2) Apoptosis-associated speck-like protein containing a CARD, also called PYCARD; (3) Neurodegenerative diseases; (4) Small molecule entities; (5) Monoclonal antibodies

Neuroinflammation exacerbates proteinopathy-driven damage

Key target for multiple neurodegenerative diseases

(1) Amyotrophic lateral sclerosis; (2) Frontotemporal lobar dementia; (3) TAR DNA binding protein-43; (4) Apoptosis-associated speck-like protein containing a CARD, also called PYCARD; (5) neurofibrillary tangle

Morphomer™: Key advantages/benefits

Accelerating early-stage development with first-/best-in-class candidates

1

CNS¹-optimized compounds with favorable brain penetration and pharmacokinetics

Able to engage target proteins in any brain compartment

2

Rationally designed, highly selective candidates bind intracellular protein aggregates

Potential for best-in-class efficacy and safety

3

Focused library of ~12,000 conformation-specific compounds reflecting years of research know-how

- Remarkable efficiency; library enriched for compounds that bind beta-sheet aggregates
- Rapid hit-to-lead optimization; process enables further expansion and optimization of library

4

Proprietary suite of assays to identify and validate successful compounds

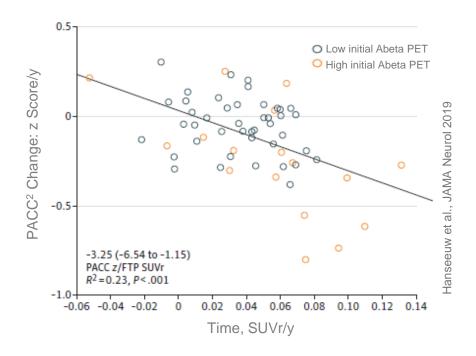
State-of-the-art translational animal models evaluate intended mechanism of action

5

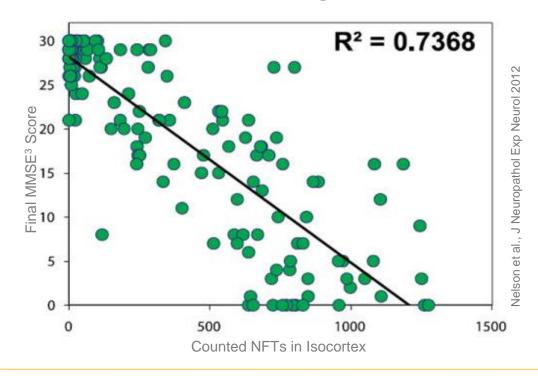
Broadly applicable for potentially disease-modifying therapeutics and precision diagnostics

- Able to engage targets intracellularly and extracellularly to disrupt key disease processes
- Able to bind targets with pharmacokinetics optimized for PET² imaging

(1) Central nervous system; (2) Positron emission tomography


Therapeutic Morphomer[™] programs

Sonia Poli, PhD, Life Cycle Leader


Tau Pathology: Correlation with the rate of cognitive decline

A key driver of Alzheimer's disease pathology with wide therapeutic window

Tau PET¹ changes are closely associated with the rate of cognitive decline

Density of neurofibrillary tangles (NFTs) significantly correlates with final cognitive status

■ Tau-targeted approaches may have a much broader therapeutic window to potentially disrupt, slow or prevent disease progression at both early and advanced stages

⁽¹⁾ Positron emission tomography; (2) Preclinical Alzheimer cognitive composite; (3) Mini-mental state examination

Comprehensive screening tailored to CNS¹-targeted small molecules

Proprietary library and mechanistic assays, combined with BBB² and safety assessment

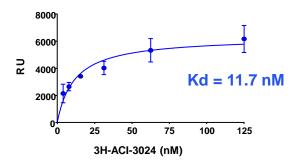
Library, scaffold hopping, rational design, focused screening, 3D Multiple chemical series for risk-reduced development ligand based ADME³: solubility, permeability, Developability profile tested Inhibition of aggregation assay early in the project microsomal stability, chemical stability Disaggregation assay NeuroPK and safety CNS exposure and intracellular MoA⁴ studies Off targets efficacy / targeting Intracellular availability **Exploratory tox** Understanding of PK/PD In vivo POC⁵ In vivo Efficacy Projection of human doses Clinical candidate Phase 1 development

Lead candidates selected based on proteinopathy-relevant MoA and developability profile for CNS

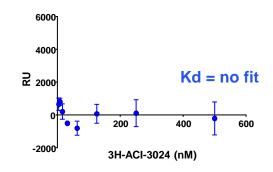
(1) Central nervous system; (2) Blood-brain barrier; (3) Absorption, distribution, metabolism, and excretion; (4) Mechanism of action; (5) Proof-of-concept; (6) Clinical candidate

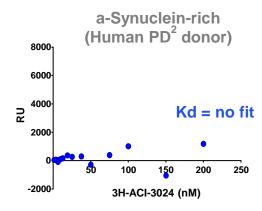
Morphomer therapeutics: Discovery and validation of ACI-3024

First-in-class, conformation—specific small molecule Tau aggregation inhibitor

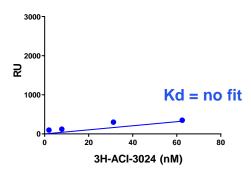


- Proprietary library screened for the Tau therapeutic program (>1000 molecules)
- More than 1000 compounds synthesized
- Broad range of technologies employed to achieve optimization (scaffold hopping, rational design, 3D-ligand base)
- ACI-3024 qualified as clinical candidate
- Eight distinct chemical series identified

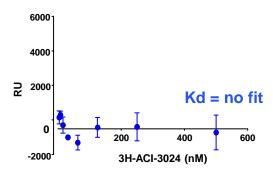

ACI-3024 is highly selective for human pathological Tau


Binding specificity across patient-derived protein aggregates

Tau-rich (human AD¹ donor)

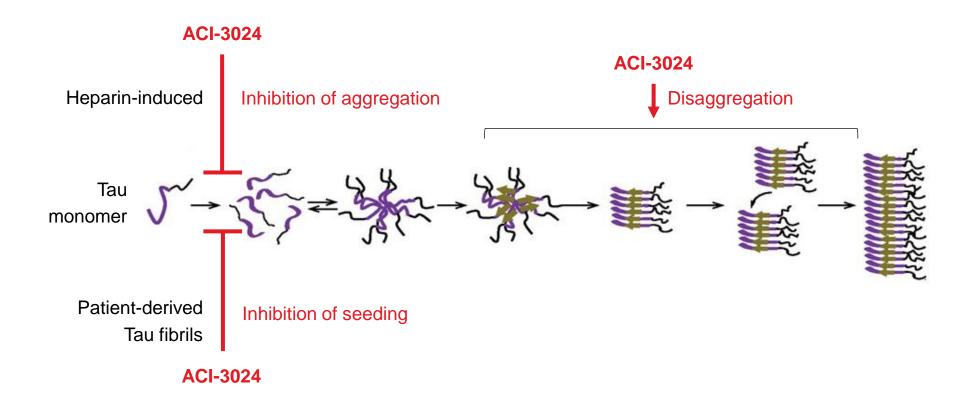


Abeta-rich (human AD donor)



Tau monomer (recombinant)

Healthy donor


- ACI-3024 is highly selective for Tau over Abeta and a-synuclein
- ACI-3024 does not bind to non-pathological Tau monomer

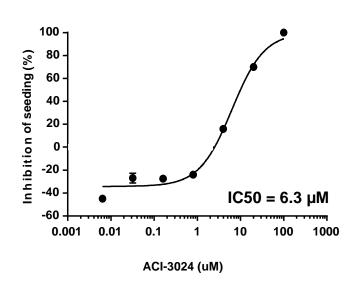
(1) Alzheimer's disease; (2) Parkinson's disease

Adapted from Pavlova et al, 2016

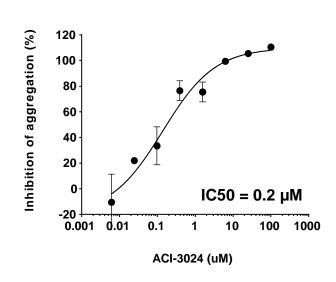
Characterizing the anti-Tau mechanism of action

Proprietary Tau seeding and aggregation assay

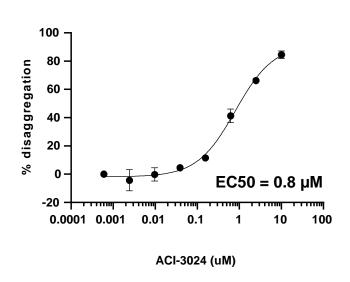
Successfully established series of assays to investigate Morphomer™ Tau aggregation inhibitor in vitro efficacy



AC Immune unpublished data


ACI-3024 shows broad in vitro activity against Tau aggregation

Multiple points of intervention


Inhibition of seeding

Inhibition of aggregation

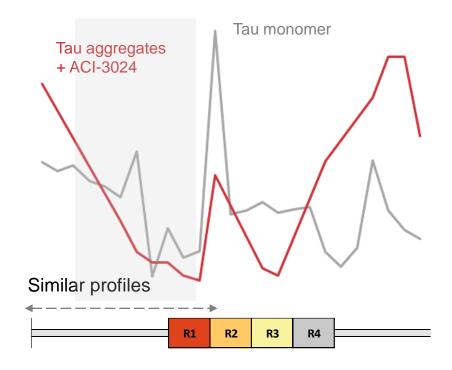
Tau disaggregation

ACI-3024 inhibits Tau seeding, Tau aggregation, and promotes Tau disaggregation

Binding induces conformational change in Tau

R3

R4

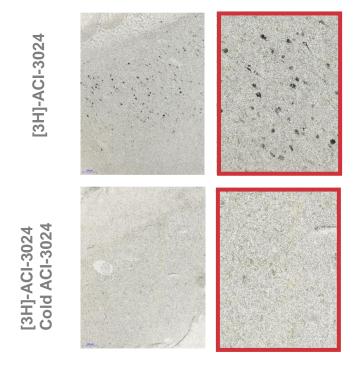

Tau aggregates treated with ACI-3024 return to monomer-like conformation

Tau aggregates +/- ACI-3024

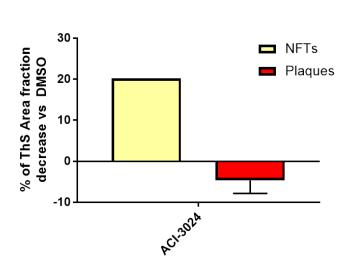
Region of major changes

Tau aggregates

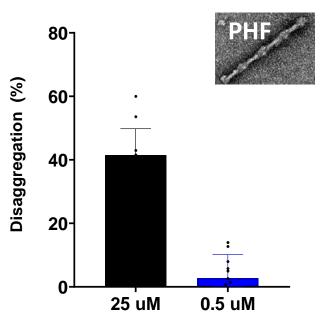
ACI-3024 induced changes vs. monomer



- ACI-3024 induces profound changes within the microtubule binding domain
- Tau aggregates exposed to ACI-3024 change conformation from pathological to monomer like

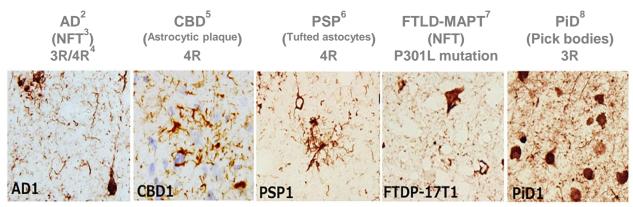

(1) Hydrogen/deuterium exchange

Physiological target engagement and activity in AD¹-derived samples

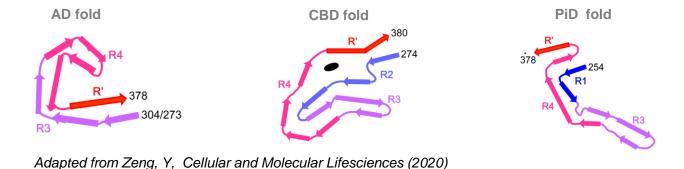

Target engagement by high resolution autoradiography

Ex vivo disaggregation of Tau NFT² on human AD brain sections

Disaggregation of human AD brain- derived PHF³



- ACI-3024 specifically binds and disaggregates Tau NFTs from human AD brains, even in the presence of Abeta
- ACI-3024 disaggregates human AD brain-derived PHF


(1) Alzheimer's disease; (2) Neurofibrillary tangles; (3) Paired helical filament Tau

Future potential as therapeutic agents across Tauopathies

In vitro evaluation of Tau morphomer MoA¹ to support further development in rare Tauopathies

Adapted from Kametani - Frontiers in Neurosci (2020)

Disaggregation of Tau isoforms and mutants by ACI-3024

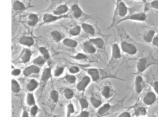
Tau isoforms	EC ₅₀ (μΜ)
4R2N	2.6
4R1N	3.3
4R0N	2.6
3R2N	1.9
3R1N	3.1
3R0N	3.5

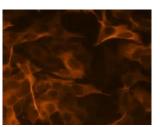
Tau mutants	EC ₅₀ (μM)
V248L	2.5
G272V	5.9
P301L	4.2
R406W	10.7

- Different Tauopathies present different Tau aggregates
- ACI-3024 can equally disaggregate 3R and 4R Tau isoforms as well as Tau mutants relevant for rare Tauopathies

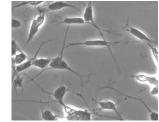
(1) Mechanism of action; (2) Alzheimer's disease; (3) Neurofibrillary tangles; (4) 3-repeat / 4-repeat; (5) Corticobasal degeneration; (6) Progressive supranuclear palsy; (7) Frontotemporal lobar degeneration caused by a MAPT gene mutation; (8) Pick's disease

Highly potent reduction of intracellular pathological Tau

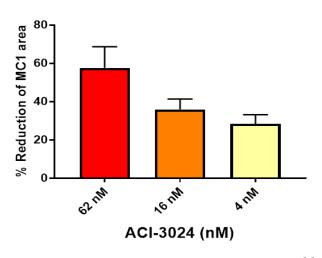

Dose-dependent reduction of misfolded Tau in FLTD-Tau¹ brain cells



Bright field


Misfolded Tau (MC-1)

Undifferentiated cells



Retinoic acid differentiated cells

Dose-dependent reduction of pathological Tau

Mean + SEM

In vitro treatment with ACI-3024 led to a dose-dependent decrease of misfolded Tau at low nM concentrations

(1) Brain cells overexpressing Tau with P301L mutation

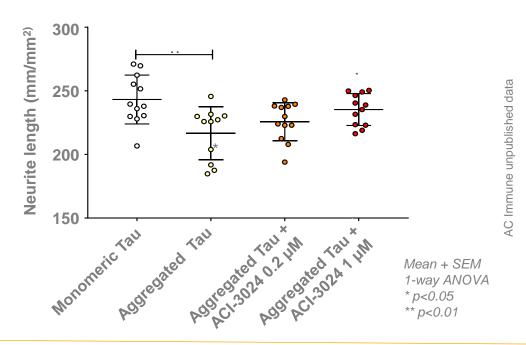
ACI-3024 has positive effect on Tau-induced neurodegeneration

Detoxification of Tau promotes neuronal health in vitro

Reduced Tau-induced neurodegeneration after seeding with human AD-brain derived Tau

AD-brain derived seeds

ACI-3024


Monomeric Tau

AGI-3024

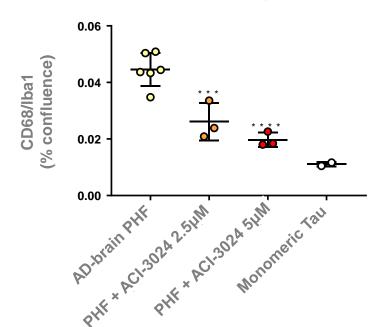
Aggregated Tau

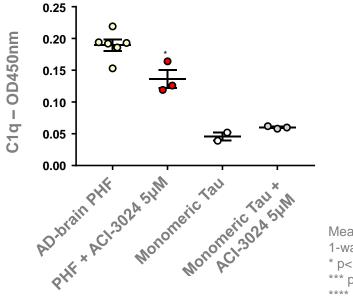
Neurons affected by Tau pathology

Neurodegeneration assessed by neurite length Rat primary neuron microglia co-cultures

Detoxification of Tau aggregates with ACI-3024 significantly decreased Tau-induced neurodegeneration

(1) Full-length Tau aggregated with 1/200 PHF seeds for 3 days; pre-incubated in presence of compounds for 1h and then incubated with cells for 3 days

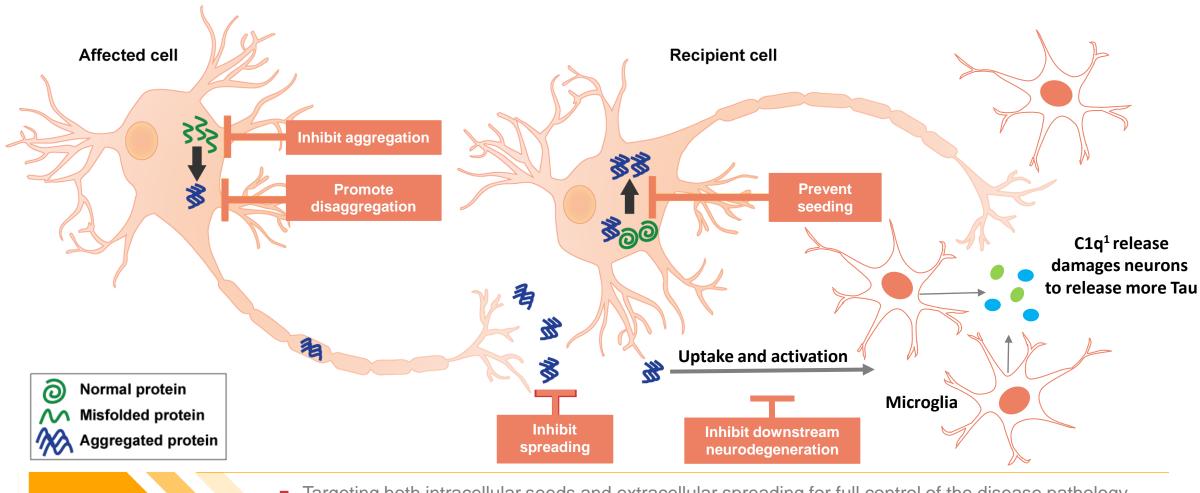

ACI-3024 significantly reduces Tau-induced neuroinflammation


Decreased microglial activation in vitro

Human AD¹-brain derived Tau activation of rat primary microglial cells

CD68+ microglia cells

C1q release from microglia



Mean + SEM 1-way ANOVA * p< 0.05 *** p< 0.005 **** p< 0.001

Detoxification of Tau aggregates significantly decreases pathological Tau induced-microglial activation

AC Immune unpublished data

ACI-3024: proposed mode of action

- Targeting both intracellular seeds and extracellular spreading for full control of the disease pathology
- Tau detoxification may reduce downstream neuroinflammation, further preventing neuronal damage

(1) Complement component 1q

ACI-3024: summary of in vitro characteristics

MoA¹ on Tau aggregates

- Inhibition of Tau aggregation and Tau seeding
- Ability to disaggregate pathological Tau
- Effect independent of Tau and FTLD-MAPT² isoform and mutants

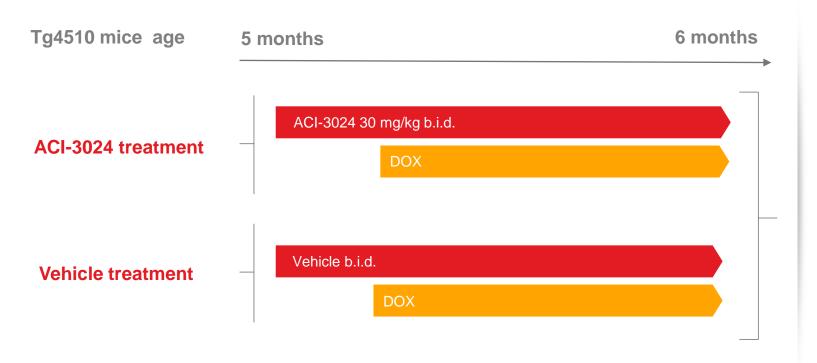
Selectivity for aggregated Tau

- Selective binding to AD³ brain-derived pathological Tau (Kd 11.7 nM)
- No binding to monomeric forms of Tau or to healthy control tissue
- No binding to Abeta from AD human brain
- No binding to alpha-synuclein from PD⁴ human brain

Intracellular activity on Tau misfolding

Dose-dependent decrease of intracellular misfolded Tau at low nM concentrations in a cellular assay

Inhibition of ND⁵ and NI⁶


- Significantly reduces Tau induced neurodegeneration
- Significantly decreases pathological Tau induced-microglial activation

(1) Mechanism of action; (2) Frontotemporal lobar degeneration caused by a MAPT gene mutation; (3) Alzheimer's disease; (4) Parkinson's disease; (5) Neurodegeneration; (6) Neuroinflammation

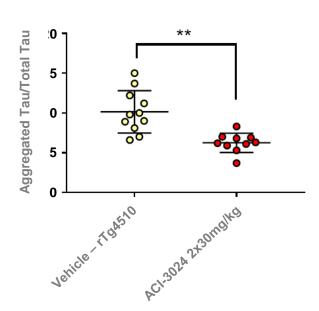
In vivo evaluation of ACI-3024 after oral administration

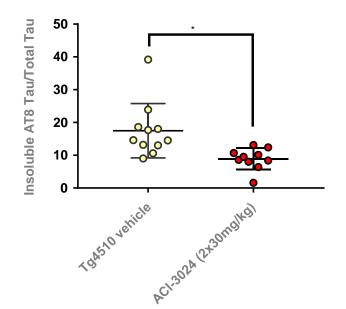
Tauopathy model: transgenic mice expressing human FTLD-MAPT¹ Tau mutation (P301L)²

End-Points

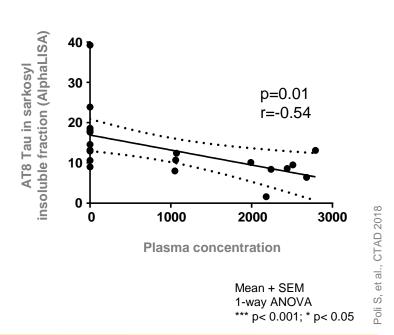
- Biochemistry:
 - Total, aggregated, and hyperphosphorylated brain Tau
 - Total CSF Tau
- Immuno-histochemistry:
 - Misfolded Tau
- Neuroinflammation:
 - Microglial analysis
- Plasma concentrations of ACI-3024

- An independent dose response experiment performed at 10, 30 or 100 mg/kg BID
 - In vitro cellular assays combined with preclinical brain pharmacokinetics led to the in vivo dose and dosing regimen
 - Dose selection driven by ability to maintain target ACI-3024 CSF³ concentration over 24-hour period


⁽¹⁾ Frontotemporal lobar degeneration caused by a MAPT gene mutation; (2) rTg4510 mice express repressible (Tet promotor Tau on/off) human 4R0N Tau carrying the P301L mutation (SantaCruz, 2005); (3) Cerebrospinal fluid

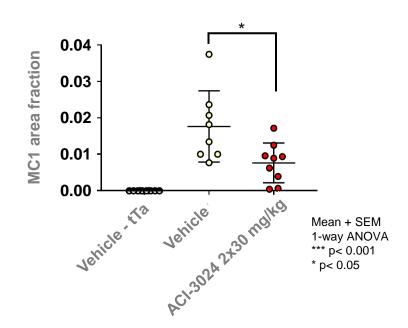

ACI-3024 significantly reduces phosphorylated pathological Tau in vivo

Biochemistry: Analysis of pathological Tau in Tau ON/OFF rTg4510 mice

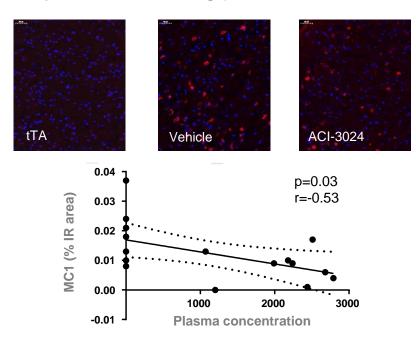

Aggregated Tau¹ normalized to total Tau²

Insoluble hyper-phosphorylated Tau³ normalized to total Tau²

Dose-proportional reduction of Tau aggregates



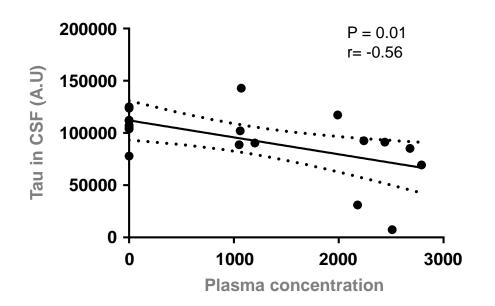
- Significantly reduced aggregated, insoluble pS202/pT205 hyper-phosphorylated Tau in cortical homogenates
- The decrease was proportional to the plasma exposure of ACI-3024

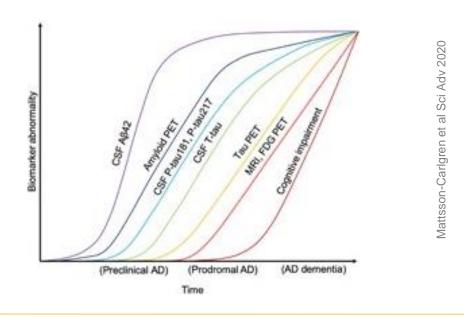

Dose-dependent reduction in Tau misfolding in vivo

Immunohistochemistry: Analysis of misfolded Tau (MC1) in rTg4510 brain section

MC1 in brain sections

Representative staining (MC1 in red, DAPI: blue)

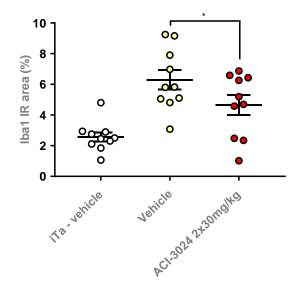

- Treatment with ACI-3024 significantly reduced misfolded Tau
- The decrease is correlated with the ACI-3024 plasma exposure


Dose-dependent reduction of Tau in CSF¹ may indicate brain clearance

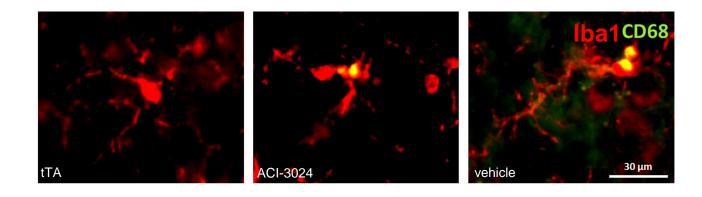
Potential as a biomarker for efficacy

Dose-dependent reduction of total Tau in CSF

Relationship between CSF and PET² biomarkers


- The significant inverse correlation between CSF Tau and ACI-3024 exposure in plasma might indicate an increase of Tau clearance from the brain
- CSF Tau concentrations may be explored as a biomarker for efficacy in clinical development

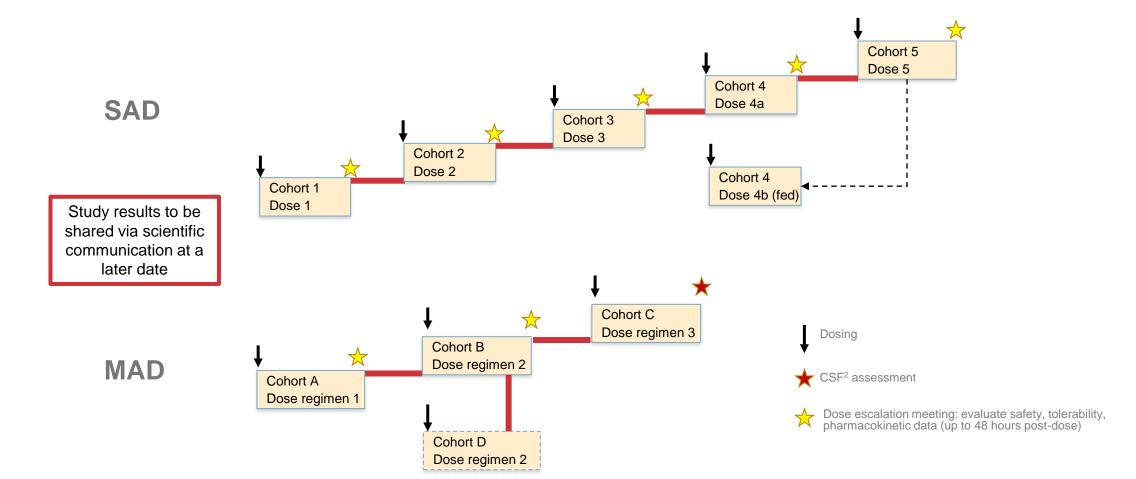
(1) Cerebrospinal fluid; (2) Positron emission tomography


Positive effect on Tau-induced neuroinflammation in vivo

ACI-3024 treatment led to significant decrease in microglial activation

Total Microglia in frontal cortex

Representative microglia labelling



- Treatment with ACI-3024 reduced microgliosis
- Detoxification of Tau aggregates significantly decreases pathological Tau induced-microglial activation

Phase 1 – SAD/MAD¹ healthy subject study

Dose escalation scheme

Morphomer[™] Tau therapeutic program

Generated first brain-penetrant Tau small molecule aggregation inhibitor

Phase 1

- ACI-3024 single and multiple ascending dose study completed as planned in healthy young, elderly, and Japanese subjects
- All cohorts completed dosing

Pharmacokinetics

- Dose-dependent plasma exposure
- Half-life of 47.5 to 101 h with steady-state reached after 12-13 days
- I ow renal clearance
- Absorption increased by food

Brain exposure

 Exceeded ACI-3024 therapeutic target concentration in CSF¹ after multiple dose administration

Development status

- Multiple Tau Morphomers have demonstrated in vitro disaggregation of pathological Tau
- Novel optimized Tau Morphomer should be advanced into development for AD² in 2021
- ACI-3024 assessment ongoing for rare NeuroOrphan indications

(1) Cerebrospinal fluid; (2) Alzheimer's disease

NASDAQ: ACIU | Morphomer™ Platform Event | March 2021

Morphomer[™] Tau therapeutic program: summary and outlook

Generated first brain-penetrant Tau small molecule aggregation inhibitor

Selectivity and in vivo efficacy

- High target specificity
- Demonstrated MoA¹ in vitro and in vivo
 - Selective inhibition of Tau seeding and aggregation
 - Promotion of disaggregation
 - Significant reduction of pathological Tau in transgenic mouse model (Tg4510)
- Consequential decrease in neuroinflammation and neurodegeneration

Brain uptake in healthy subjects

- Completed single and multiple ascending dose Phase 1 study
- Achieved therapeutic target concentration in CSF²

 Tau Morphomers[™] have the potential to treat AD³ and rare diseases caused by Tau misfolding and aggregation

Diagnostic PET imaging agents targeting Tau, a-syn and TDP-43

Francesca Capotosti, PhD, Group leader in vivo pharmacology and non-clinical safety

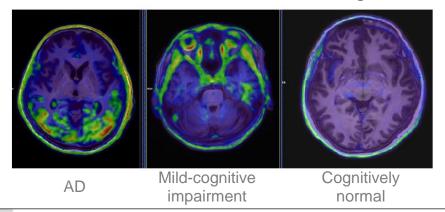
Brain PET¹ imaging is key for precision medicine

PET imaging in neurodegenerative diseases

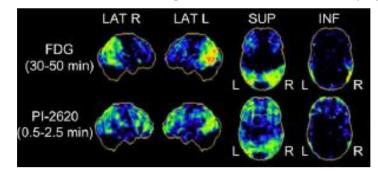
- The vast majority of neurodegenerative diseases are sporadic; diagnosis cannot be only based on genetic testing
- So far clinically relevant fluid markers have been identified only for few NDDs and their correlation with brain pathology remains often poorly understood
- In AD², the availability of Abeta PET tracers has allowed better stratification of patient populations and target engagement of anti-Abeta immunotherapies to be proven
 - In AD and other Tauopathies, Tau tracers have the potential to provide differential diagnosis. Such tracers also have potential as prognostic and/or predictive biomarkers in clinical trials
 - There is a clear unmeet clinical need for new PET tracers for other targets in neurodegeneration such as a-syn³ and TDP-43⁴

⁽¹⁾ Positron emission tomography; (2) Alzheimer's disease; (3) Alpha-synuclein; (4) TAR DNA-binding protein 43

Chotipanich et al., Molecular Imaging 2020


Tau-PET¹ tracer PI-2620: A tool to assess early AD² and neuronal injury

Target	Misfolded Tau (3R/4R, 3R and 4R)
Key results	 High specificity for pathological forms of human Tau in AD (3R/4R) and PSP³ (4R) Outstanding PET tracer profile: excellent brain uptake, fast wash-out and low off-target binding, allowing early-stage disease imaging Good reproducibility of PET scans in test-retest studies


Phase 1 clinical study results

PI-2620 Tau PET in different disease stage

Phase 1 clinical study results⁴

PI-2620 Tau PET as surrogate marker of neuronal injury in AD

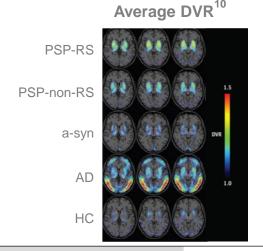
FDG and PI-2620 early phase PET scans

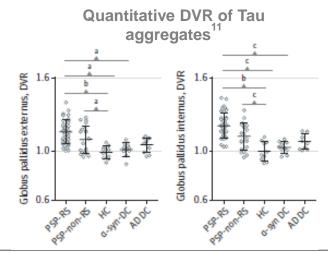
Key differentiation

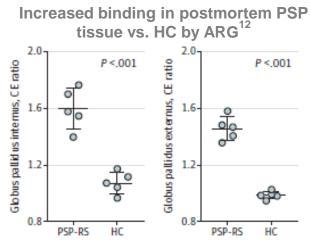
- 3R/4R Tau detection in AD; reproducible 4R Tau detection in PSP; promising 4R Tau detection in CBD⁵
- Potential for earlier and more reliable diagnosis: PI-2620 PET imaging can detect and assess PSP pathology in vivo
- PI-2620 PET imaging can serve as surrogate biomarker for neuronal injury and allow differential diagnosis

Development status

Phase 2 longitudinal study in AD and Phase 1 study in PSP (test-retest) nearing completion

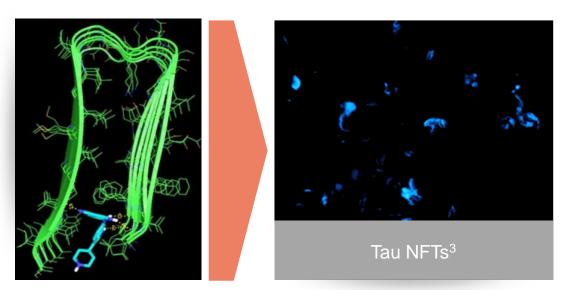

(1) Positron emission tomography; (2) Alzheimer's disease; (3) Progressive supranuclear palsy; (4) Fluorodeoxyglucose; R, right; L, left; LAT, lateral; SUP, superior; INF, inferior; (5) Corticobasal degeneration

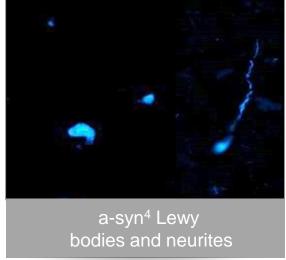


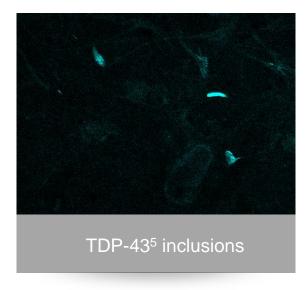

PI-2620 is the only PET¹ tracer that can reliably detect 4-repeat (4R) Tau

4R Tau detection may enable precision medicine approaches in PSP² and other Tauopathies

Study Rationale	 Multicenter study enrolled patients with PSP-RS³, PSP-non-RS⁴, a-synucleinopathies (MSA⁵, PD⁶), AD⁷, and HC⁸ Strong overlap of clinical symptoms; clinical assessments lack sensitivity in early disease and specificity for pathological Tau No available biomarker currently fulfills the criteria to ensure differential diagnosis in PSP
Key results	 Results show clear differentiation of PSP from non-PSP patients: High specificity for pathological forms of Tau in PSP (4R) with specific autoradiography signal in PSP tissue Statistically significant signal in PSP target regions compared to healthy controls (HC) and disease controls (a-syn⁹, AD) Clear target engagement (binding to 4R Tau aggregates) in autoradiography on postmortem PSP tissue

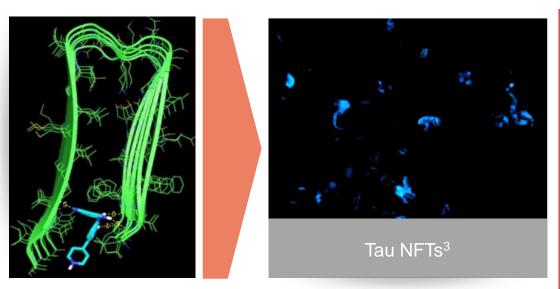

Key differentiation

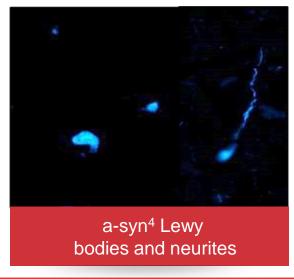

Reproducible 4R Tau detection in PSP; promising 4R Tau detection in CBD¹³

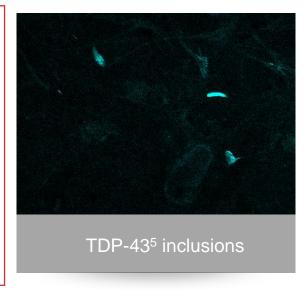

⁽¹⁾ Positron emission tomography; (2) Progressive supranuclear palsy; (3) PSP-Richardson syndrome; (4) PSP-non-Richardson syndrome; (5) Multiple system atrophy; (6) Parkinson's disease; (7) Alzheimer's disease; (8) Healthy control; (9) a-synucleinopathies; (10) Distribution volume ratio; (11) Statistics derive from multivariant analysis including center, age and sex; (12) Autoradiography; (13) Corticobasal degeneration

Developing a suite of PET¹ tracers against emerging targets in NDD²

Precision medicine approach enabled by the Morphomer™ platform


The development pathway:


- Rely only on patient-derived brain samples for target engagement
- Minimize off-target binding to optimize signal-to-noise ratio
- Optimize selectivity against other potential co-pathologies (Abeta, Tau, TDP-43)
- Optimize brain penetration and washout



Developing a suite of PET¹ tracers against emerging targets in NDD²

Precision medicine approach enabled by the Morphomer™ platform

The development pathway:

- Rely only on patient-derived brain samples for target engagement
- Minimize off-target binding to optimize signal-to-noise ratio
- Optimize selectivity against other potential co-pathologies (Abeta, Tau, TDP-43)
- Optimize brain penetration and washout
- >2000 MorphomersTM have been designed, synthesized and screened to date for AC Immune's PET programs

(1) Positron emission tomography; (2) Neurodegenerative disease; (3) Neurofibrillary tangles; (4) Alpha synuclein; (5) TAR DNA binding protein-43

Early treatment of PD¹ with a pathological a-syn² PET³ tracer

Diagnosing PD before onset of clinical symptoms offers improved treatment paradigms

- >90% of PD cases are sporadic; diagnosis cannot be based on genetic testing⁴
- Dopaminergic imaging has a poor correlation with clinical severity^{5,6}
- a-Synuclein inclusions (Lewy bodies and Lewy neurites) appear before dopaminergic changes, i.e., premotor stage of PD⁷
- Development of fluid biomarkers limited by low abundance of pathological a-syn in biofluids
- Pathological aggregates of a-syn are intracellular, not as abundant as Abeta and Tau pathology in Alzheimer's disease and often
 present as part of co-pathologies⁸
- Clinical trials targeting a-syn have a higher chance of success when utilizing an a-syn tracer for recruiting a more homogeneous population as well as longitudinal surveillance
- Thus, our aim is to develop a first-in-class high affinity, selective a-syn tracer

⁽¹⁾ Parkinson's disease; (2) Alpha-synuclein; (3) Positron emission tomography; (4) Shah et al., 2014 Journal of Nuclear Medicine; (5) Fahn et al., 2004. N Engl J Med; (6) Brooks et al., 2003 Exp Neurol.; (7) Eberling et al., 2013 J Parkinsons Dis; (8) Robinson et al., 2018 Brain

ACI-3847 is a potentially first-in-class a-synuclein diagnostic

Clinical evaluation of 2nd generation PET¹ tracer supported by strong preclinical data

Target engagement and binding affinity

- Significantly higher specific signal in different PD² cases with confirmed asyn³ pathology as compared to non-demented control subjects
- Autoradiography signal directly proportional to the pathological a-syn load

Selectivity

- [3H]ACI-3847 displays no binding to AD⁴ brain homogenates containing pathological Abeta and Tau
- No significant off-target binding to a panel of >130 receptors and enzymes

18F-labeling and pharmacokinetic profile

- Radiolabeling achieved at last synthetic step with good purity and yield
- Good, homogeneous brain uptake as well as a fast and complete washout in non-human primates

⁽¹⁾ Positron emission tomography; (2) Parkinson's disease; (3) Alpha-synuclein; (4) Alzheimer's disease

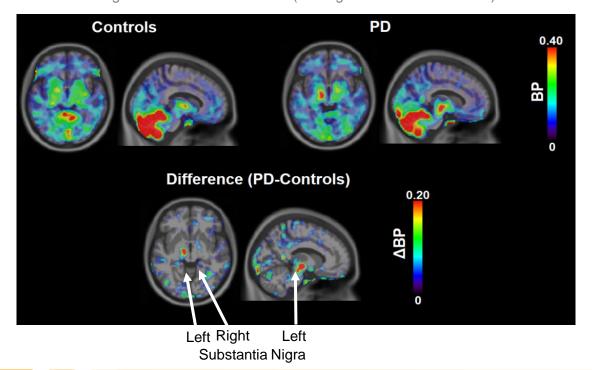
ACI-3847 first-in-human evaluation: Study objectives and demographics

Study objective: Assess brain uptake and pharmacokinetics of ACI-3847 as a PET¹ imaging marker for a-syn² pathology in individuals with probable PD³ versus HV⁴

Study Subject ID	Gender	Cohort	Age	MDS-UPDRS part 3 score OFF/ON	Hoehn & Yahr score	MoCA score	Affected side: DaTscan
PD_01	Male	PD	60	49/26	2	26	Left
PD_05	Female	PD	49	52/51	2	27	Left
PD_07	Male	PD	73	52/46	2	22	Left
PD_09	Male	PD	77	46/39	2.5	23	Left
PD_11	Male	PD	65	26/21	2	28	Right
HV_04	Male	HV	30	NA	NA	30	NA
HV_06	Female	HV	71	NA	NA	30	NA
HC_08	Female	HV	50	NA	NA	30	NA
HV_10	Female	HV	77	NA	NA	28	NA
HV_12	Female	HV	64	NA	NA	28	NA

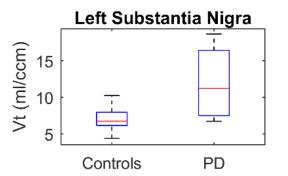
- ACI-3847 was evaluated in 5 healthy volunteers, 4 probable mild idiopathic PD cases and one relatively young
 SNCA gene duplication carrier
- 4/5 PD cases show an asymmetrical dopaminergic loss that is more pronounced in the left substantia nigra

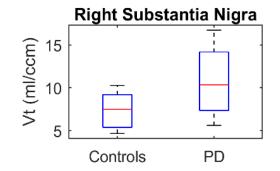
⁽¹⁾ Positron emission tomography; (2) Alpha synuclein; (3) Parkinson's disease; (4) Healthy volunteers


In collaboration with Prof. O. Hanssosn. Skane University Hospitz

Kinetic modeling shows clear signal elevation in substantia nigra

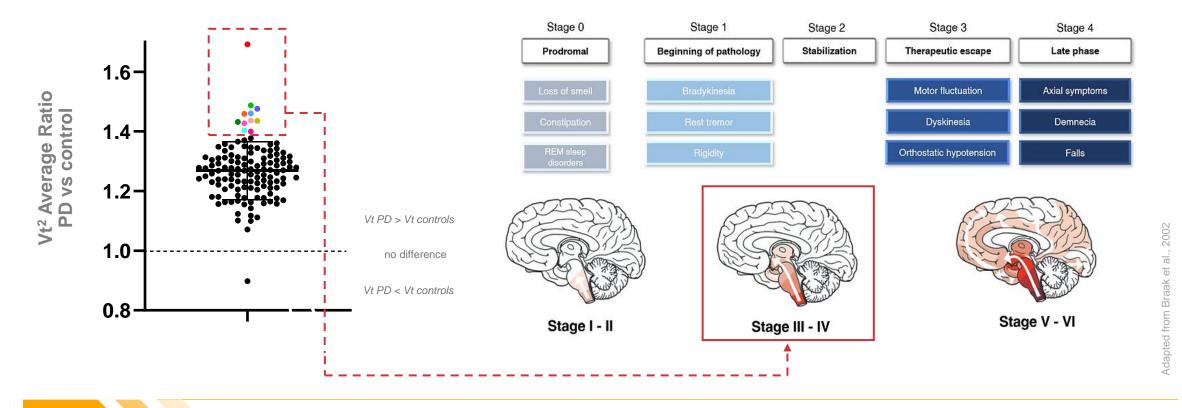
Higher tracer uptake in idiopathic PD¹ cases compared to healthy controls


Binding potential maps


Logan reference tissue model (ref. region: middle frontal lobe)

Blood-based Vt³

(Logan model with blood input function)

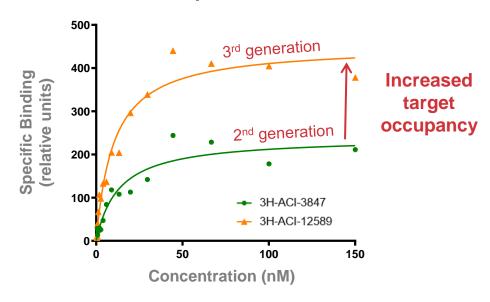


■ PD subjects show slightly higher tracer uptake in brain regions that accumulate a-synuclein, including substantia nigra, despite overlapping signal between PD cases and healthy controls

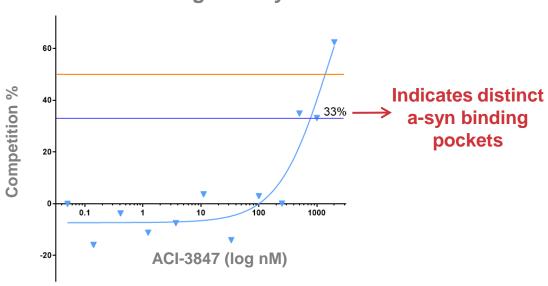
(1) Parkinson's disease; (2) Alpha synuclein; (3) Volume of distribution

Signal elevation more pronounced in regions associated with early PD¹

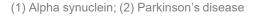
■ ACI-3847 differentiates brain regions associated with early PD; good correlation with patient profile of FiH³ study


Initiated follow up clinical study in indications with expected higher levels of a-synuclein pathology

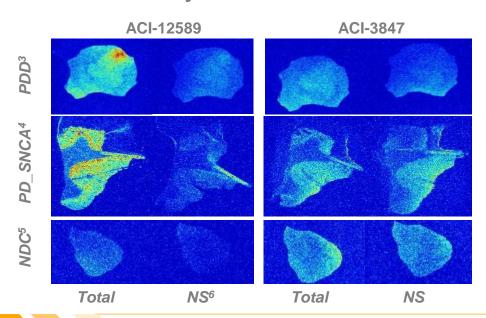
(1) Parkinson's disease; (2) Volume of distribution; (3) First-in-human

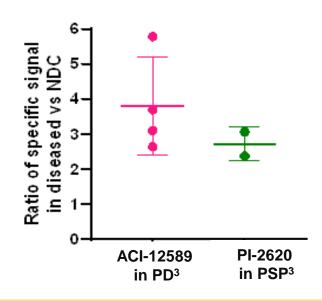

3rd generation a-syn¹ tracers have improved properties

Candidates with increased target occupancy and different binding sites


Saturation binding on tissue homogenates from idiopathic PD² cases

Limited displacement of newly identified ligands by ACI-3847

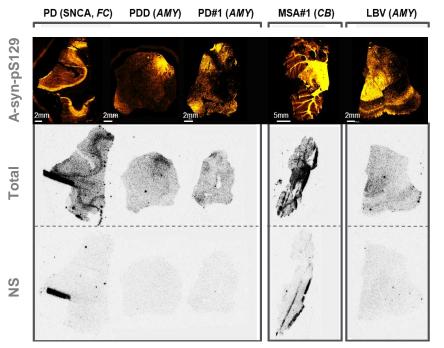

- Newly identified compounds are highly promising with up to 10-fold increased target occupancy
- Potential for enhanced differentiation between diseased and healthy subjects based on recognition of a different and more abundant a-syn binding pocket

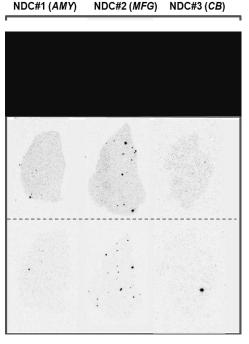

ACI-12589 is a potentially best-in-class a-synuclein PET¹ tracer

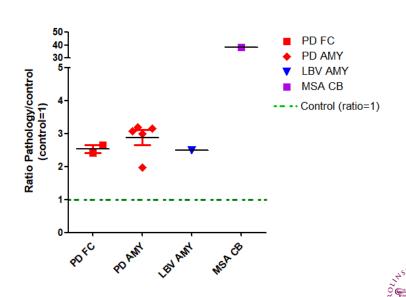
Ex vivo characterization of 3rd generation tracer

Comparison of 2nd and 3rd generation a-syn² PET tracers

Comparison of 3rd generation a-syn PET tracer and PI-2620 (Tau PET tracer)


- Compared to ACI-3847, ACI-12589 provides:
 - Stronger, more specific signal in tissue from different PD⁷ patients, even tissue with limited a-syn pathology
 - Better differentiation between disease and non-disease controls
- Ex vivo, ACI-12589 showed a similar signal elevation in PD vs control cases as PI-2620 in PSP





ACI-12589: A potentially broadly applicable diagnostic agent

Potential to diagnose a range of alpha-synucleinopathies

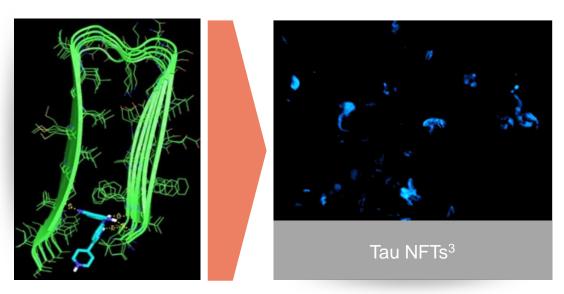
Total = Total binding (1.7nM) NS = Non-specific binding (1μM)

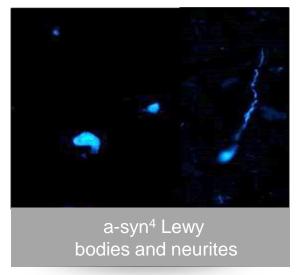
PD_SNCA: PD with SNCA G51D mutation PDD: Parkinson's disease with dementia

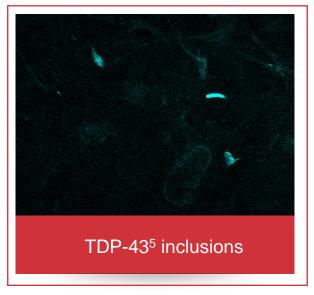
PD: idiopathic PD LBV: Lewy body variant MSA: multiple system atrophy NDC: non-diseased control

FC: Frontal cortex AMY: Amygdala

CB: Cerebellum MFG: Middle frontal gyrus


■ Target engagement across the full spectrum of synucleinopathies, despite differences in morphology and brain localization of a-synuclein aggregates


Recently initiated first-in-human clinical study – results expected in Q3 2021

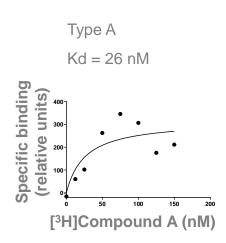


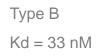
Developing a suite of PET¹ tracers against emerging targets in NDD²

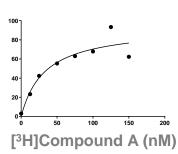
Precision medicine approach enabled by the Morphomer™ platform

The development pathway:

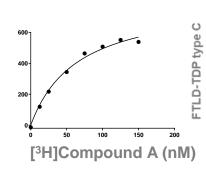
- Rely only on patient-derived brain samples for target engagement
- Minimize off-target binding to optimize signal-to-noise ratio
- Optimize selectivity against other potential co-pathologies (Abeta, Tau, TDP-43)
- Optimize brain penetration and washout
- >600 MorphomersTM have been designed, synthesized and screened to date for AC Immune's TDP-43 PET program

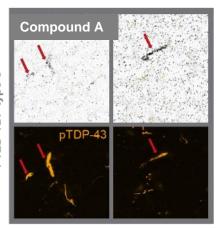


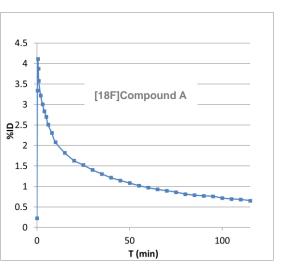

First-in-class TDP-43¹ PET² imaging tracer


Designed to facilitate clinical development and enable precision medicine

Target	Aggregated TDP-43
Key results	 Identified reference compound (Compound A) with binding to pathological TDP-43 aggregates Target engagement confirmed by micro-autoradiography on a subset of FTLD-TDP³ Type C pathology PK⁴ study in mice confirmed good, rapid brain uptake (4.11%)






Type C Kd = 65.37 nM

Target engagement by micro-autoradiography

Brain PK profile

Key	differe	entiation
-----	---------	-----------

First-in-class PET tracer for TDP-43

Next steps

Identify lead compound and initiate IND-enabling studies

(1) TAR DNA binding protein-43; (2) Positron emission tomography; (3) Frontotemporal lobar degeneration with TDP-43 pathology; (4) Pharmacokinetic

Ref: AC Immune unpublished data

Delivering first- and best-in-class PET¹ tracers for NDD²

Tau-PET program

PI-2620, a next-generation Tau PET tracer:

- Showed reduced off-target binding compared with first-generation Tau PET tracers; potential for earlier diagnosis
- Successfully completed Phase 1 in AD³; currently being evaluated in a Phase 2 longitudinal AD trial and Phase 1 in PSP⁴

2nd generation tracer ACI-3847:

- Completed first-in-human trial in idiopathic PD⁶; showed a small signal elevation in relevant brain regions
- Currently evaluated in different synucleinopathies with expected higher a-synuclein pathology

3rd generation tracer ACI-12589:

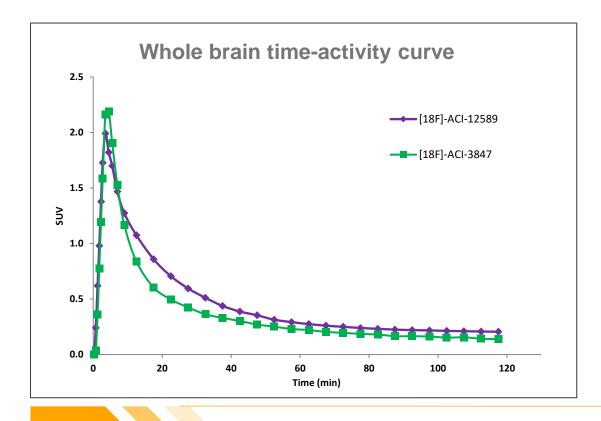
- Showed superior ex vivo properties
- Recently initated first-in-human evaluation with results expected Q3 2021

TDP-43⁷-PET program

OJPND

- Established state-of-the-art screening assays based on patient-derived tissue with expected high translational value
- Identified candidates showing nanomolar affinities on tissues from patients with TDP-43 proteinopathies
- Affinity and selectivity will be further optimized to deliver a potential first-in-class PET tracer for TDP-43

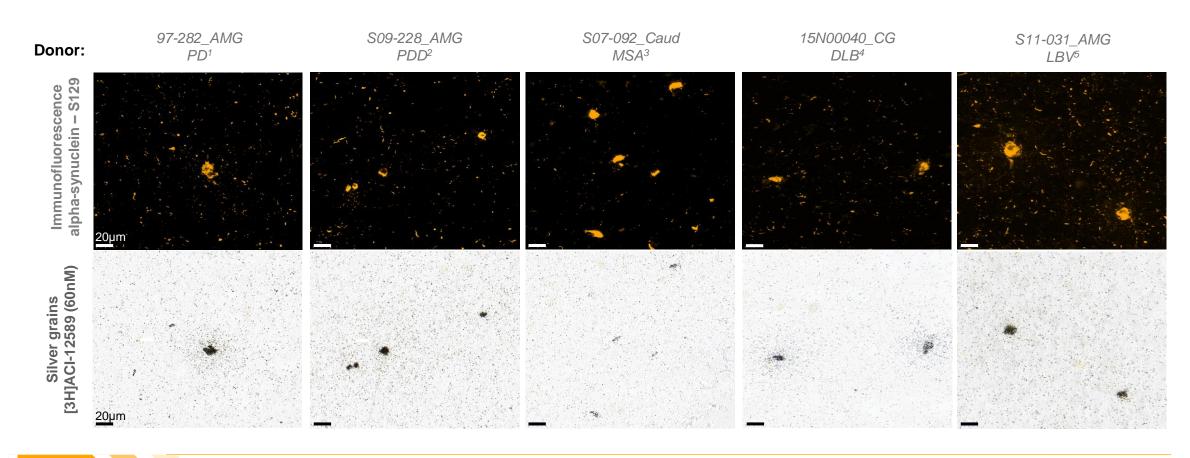
(1) Positron emission tomography; (2) Neurodegenerative disease; (3) Alzheimer's disease; (4) Progressive supranuclear palsy; (5) Alpha-synuclein; (6) Parkinson's disease; (7) TAR DNA binding protein -43



Backup slides

ACI-12589 has a favorable PK¹ profile in non-human primates

ACI-12589 may have potential as a PET² tracer



NHP ID	Brain Uptake (min to C _{max})	Brain Uptake (% ID/g)	Peak(half peak (min)	Remaining at 120 min (% of C _{max})
Target	< 10	>3	<30	<10
ACI-12589	3.5	4.3	14	10
ACI-3847	4.5	3-5	9	6

■ [18F]ACI-12589 displays a PK in non-human primates suitable for its use as brain PET tracer with good and fast brain uptake, homogeneous distribution as well as rapid and complete washout

(1) Pharmacokinetic (2) Positron emission tomography

ACI-12589 shows target engagement across alpha-synucleinopathies

⁽¹⁾ Parkinson's disease; (2) Parkinson's disease with dementia; (3) Multiple system atrophy; (4) Dementia with Lewy bodies; (5) Lewy body variant

Conclusion

Andrea Pfeifer, PhD, Chief Executive Officer

AC Immune value drivers

PRECISION MEDICINE

Novel Therapeutics and Diagnostics

- Key differentiation
- Diagnose and treat specific pathologies
- Potential for tailored combination therapies

PLATFORMS

SupraAntigen™ and Morphomer™

- Generate best-in-class candidates to diagnose and target neurodegenerative diseases
- Clinically validated across multiple programs

PIPELINE

Broad – Diverse – Late-Stage

- Addressing several key pathologies in NDD¹
- Validating partnerships fund late-stage development
- Early-stage programs generate future value

(1) Neurodegenerative disease

Multiple catalysts to drive value in 2021

Opportunities for further value creation

Biologic

Small Molecule

Diagnostic

Q1

ACI-35.030

Phase 1b/2a interim analysis (second highest dose)¹

ACI-24

- Phase 1b top line study reporting in DS
- Phase 2 interim analysis (12-month)⁶ in AD

a-Syn² PET tracer³ ✓ First patient in FiH⁴ study Q2

Semorinemab

Phase 2 primary completion⁵

ACI-24 in AD

Phase 2 interim analysis (18-month)⁶

pTau vaccine (JACI-35.0547)

Phase 1b/2a interim analysis8

ACI-3024

Select NeuroOrphan indication

Q3

a-Syn PET tracer³

FiH study readout

Morphomer a-syn

Start in vivo PoC studies

TDP-43⁹ PET tracer

Initiate IND¹⁰-enabling studies

Q4

ACI-35.030

Phase 1b/2a interim analysis (highest dose)¹¹

ACI-24 in DS¹²

Submit IND for optimized formulation

Morphomer NLRP3¹³-ASC¹⁴

- Report in vivo PoC in non-CNS¹⁵ disease model
- Start in vivo PoC studies (CNS) with validated candidate

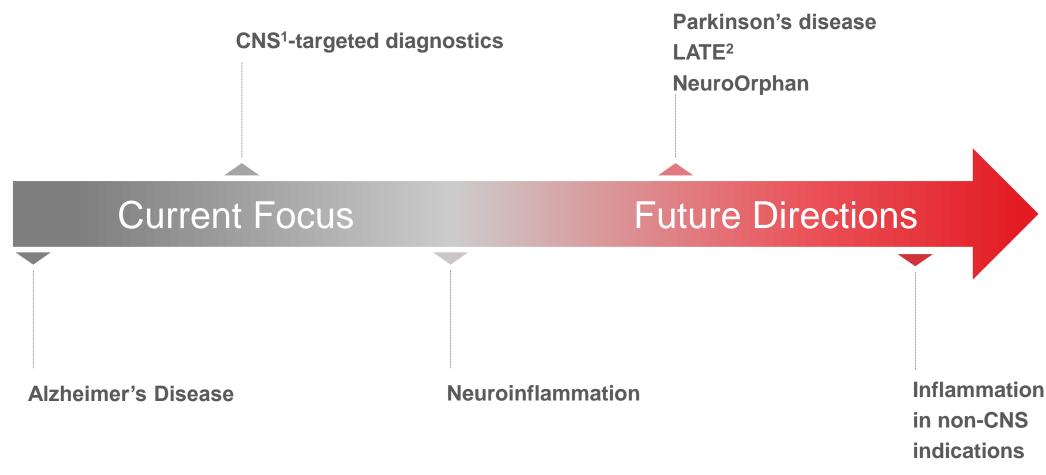
Anti-NLRP3-ASC antibody

Start in vivo PoC

Anti-TDP-43 antibody

Initiate IND-enabling toxicology studies

TDP-43 biofluid diagnostic


Establish validation-ready assay

(1) Cohort 1.2: safety/tolerability and immunogenicity; (2) Alpha synuclein; (3) 3rd-generation compound; (4) First-in-human clinical study; (5) Lauriet study in moderate Alzheimer's disease; estimated last patient, last visit; (6) Safety/tolerability and immunogenicity; (7) Alternative pTau vaccine; (8) JACI-35.054: safety/tolerability and immunogenicity; (9) TAR DNA-binding protein 43; (10) Investigational new drug; (11) Cohort 1.3: safety/tolerability and immunogenicity; (12) Down syndrome-related Alzheimer's disease; (13) (NOD)-like receptor protein 3; (14) Apoptosis-associated speck-like protein containing a CARD, also called PYCARD; (15) Central nervous system

AC Immune future directions

Expanding our capabilities and building a fully-integrated company

(1) Central nervous system; (2) Limbic-predominant age-related TDP-43 encephalopathy

AC Immune

We continue to shape the future of neurodegeneration by discovering and developing breakthrough therapies through pioneering science and precision medicine

Q&A